

B OARD OF STUDIES
 NE W S O U T H W ALES

2013
 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I

Pages 2-7

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 8-15

60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 The polynomial $P(x)=x^{3}-4 x^{2}-6 x+k$ has a factor $x-2$.
What is the value of k ?
(A) 2
(B) 12
(C) 20
(D) 36

2 The diagram shows the graph $y=f(x)$.

Which diagram shows the graph $y=f^{-1}(x)$?
(A)

(B)

(C)

(D)

3 The points A, B and C lie on a circle with centre O, as shown in the diagram. The size of $\angle A O C$ is $\frac{3 \pi}{5}$ radians.

NOT TO SCALE

What is the size of $\angle A B C$ in radians?
(A) $\frac{3 \pi}{10}$
(B) $\frac{2 \pi}{5}$
(C) $\frac{7 \pi}{10}$
(D) $\frac{4 \pi}{5}$

4 Which diagram best represents the graph $y=x(1-x)^{3}(3-x)^{2}$?

(B)

(C)

(D)

5 Which integral is obtained when the substitution $u=1+2 x$ is applied to $\int x \sqrt{1+2 x} d x$?
(A) $\frac{1}{4} \int(u-1) \sqrt{u} d u$
(B) $\frac{1}{2} \int(u-1) \sqrt{u} d u$
(C) $\int(u-1) \sqrt{u} d u$
(D) $2 \int(u-1) \sqrt{u} d u$

6 Let $|a| \leq 1$. What is the general solution of $\sin 2 x=a$?
(A) $\quad x=n \pi+(-1)^{n} \frac{\sin ^{-1} a}{2}, n$ is an integer
(B) $\quad x=\frac{n \pi+(-1)^{n} \sin ^{-1} a}{2}, n$ is an integer
(C) $x=2 n \pi \pm \frac{\sin ^{-1} a}{2}, n$ is an integer
(D) $\quad x=\frac{2 n \pi \pm \sin ^{-1} a}{2}, n$ is an integer

7 A family of eight is seated randomly around a circular table.
What is the probability that the two youngest members of the family sit together?
(A) $\frac{6!2!}{7!}$
(B) $\frac{6!}{7!2!}$
(C) $\frac{6!2!}{8!}$
(D) $\frac{6!}{8!2!}$

8 The angle θ satisfies $\sin \theta=\frac{5}{13}$ and $\frac{\pi}{2}<\theta<\pi$.
What is the value of $\sin 2 \theta$?
(A) $\frac{10}{13}$
(B) $-\frac{10}{13}$
(C) $\frac{120}{169}$
(D) $-\frac{120}{169}$

9 The diagram shows the graph of a function.

Which function does the graph represent?
(A) $y=\cos ^{-1} x$
(B) $y=\frac{\pi}{2}+\sin ^{-1} x$
(C) $y=-\cos ^{-1} x$
(D) $y=-\frac{\pi}{2}-\sin ^{-1} x$

10 Which inequality has the same solution as $|x+2|+|x-3|=5$?
(A) $\frac{5}{3-x} \geq 1$
(B) $\frac{1}{x-3}-\frac{1}{x+2} \leq 0$
(C) $x^{2}-x-6 \leq 0$
(D) $|2 x-1| \geq 5$

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) The polynomial equation $2 x^{3}-3 x^{2}-11 x+7=0$ has roots α, β and γ.

Find $\alpha \beta \gamma$.
(b) Find $\int \frac{1}{\sqrt{49-4 x^{2}}} d x$. question, only one option is correct. For each question a student chooses one option at random.

Write an expression for the probability that the student chooses the correct option for exactly 7 questions.
(d) Consider the function $f(x)=\frac{x}{4-x^{2}}$.
(i) Show that $f^{\prime}(x)>0$ for all x in the domain of $f(x)$.
(ii) Sketch the graph $y=f(x)$, showing all asymptotes.

Question 11 continues on page 9

Question 11 (continued)
(e) Find $\lim _{x \rightarrow 0} \frac{\sin \frac{x}{2}}{3 x}$.
(f) Use the substitution $u=e^{3 x}$ to evaluate $\int_{0}^{\frac{1}{3}} \frac{e^{3 x}}{e^{6 x}+1} d x$.
(g) Differentiate $x^{2} \sin ^{-1} 5 x$.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Write $\sqrt{3} \cos x-\sin x$ in the form $2 \cos (x+\alpha)$, where $0<\alpha<\frac{\pi}{2}$.
(ii) Hence, or otherwise, solve $\sqrt{3} \cos x=1+\sin x$, where $0<x<2 \pi$.
(b) The region bounded by the graph $y=3 \sin \frac{x}{2}$ and the x-axis between $x=0$ and $x=\frac{3 \pi}{2}$ is rotated about the x-axis to form a solid.

Find the exact volume of the solid.
(c) A cup of coffee with an initial temperature of $80^{\circ} \mathrm{C}$ is placed in a room with a constant temperature of $22^{\circ} \mathrm{C}$.

The temperature, $T^{\circ} \mathrm{C}$, of the coffee after t minutes is given by

$$
T=A+B e^{-k t}
$$

where A, B and k are positive constants. The temperature of the coffee drops to $60^{\circ} \mathrm{C}$ after 10 minutes.

How long does it take for the temperature of the coffee to drop to $40^{\circ} \mathrm{C}$? Give your answer to the nearest minute.
(d) The point $P\left(t, t^{2}+3\right)$ lies on the curve $y=x^{2}+3$. The line ℓ has equation $y=2 x-1$. The perpendicular distance from P to the line ℓ is $D(t)$.

(i) Show that $D(t)=\frac{t^{2}-2 t+4}{\sqrt{5}}$.

2
(ii) Find the value of t when P is closest to ℓ.
(iii) Show that, when P is closest to ℓ, the tangent to the curve at P is parallel to ℓ.
(e) A particle moves along a straight line. The displacement of the particle from 2 the origin is x, and its velocity is v. The particle is moving so that $v^{2}+9 x^{2}=k$, where k is a constant.

Show that the particle moves in simple harmonic motion with period $\frac{2 \pi}{3}$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) A spherical raindrop of radius r metres loses water through evaporation at a rate that depends on its surface area. The rate of change of the volume V of the raindrop is given by

$$
\frac{d V}{d t}=-10^{-4} A
$$

where t is time in seconds and A is the surface area of the raindrop. The surface area and the volume of the raindrop are given by $A=4 \pi r^{2}$ and $V=\frac{4}{3} \pi r^{3}$ respectively.
(i) Show that $\frac{d r}{d t}$ is constant. evaporate?
(b) The point $P\left(2 a p, a p^{2}\right)$ lies on the parabola $x^{2}=4 a y$. The tangent to the parabola at P meets the x-axis at $T(a p, 0)$. The normal to the tangent at P meets the y-axis at $N\left(0,2 a+a p^{2}\right)$.

The point G divides $N T$ externally in the ratio $2: 1$.
(i) Show that the coordinates of G are $\left(2 a p,-2 a-a p^{2}\right)$.
(ii) Show that G lies on a parabola with the same directrix and focal length as the original parabola.
(c) Points A and B are located d metres apart on a horizontal plane. A projectile is fired from A towards B with initial velocity $u \mathrm{~m} \mathrm{~s}^{-1}$ at angle α to the horizontal.

At the same time, another projectile is fired from B towards A with initial velocity $w \mathrm{~m} \mathrm{~s}^{-1}$ at angle β to the horizontal, as shown on the diagram.

The projectiles collide when they both reach their maximum height.

The equations of motion of a projectile fired from the origin with initial velocity $V \mathrm{~m} \mathrm{~s}^{-1}$ at angle θ to the horizontal are

$$
x=V t \cos \theta \text { and } y=V t \sin \theta-\frac{g}{2} t^{2} . \quad \text { (Do NOT prove this.) }
$$

(i) How long does the projectile fired from A take to reach its maximum height?
(ii) Show that $u \sin \alpha=w \sin \beta$.
(iii) Show that $d=\frac{u w}{g} \sin (\alpha+\beta)$.

Question 13 continues on page 14

Question 13 (continued)
(d) The circles C_{1} and C_{2} touch at the point T. The points A and P are on C_{1}. The line $A T$ intersects C_{2} at B. The point Q on C_{2} is chosen so that $B Q$ is parallel to $P A$.

Copy or trace the diagram into your writing booklet.
Prove that the points Q, T and P are collinear.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that for $k>0, \frac{1}{(k+1)^{2}}-\frac{1}{k}+\frac{1}{k+1}<0$.

1

3

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}<2-\frac{1}{n}
$$

(b) (i) Write down the coefficient of $x^{2 n}$ in the binomial expansion of $(1+x)^{4 n}$.
(ii) Show that $\left(1+x^{2}+2 x\right)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} x^{2 n-k}(x+2)^{2 n-k}$.
(iii) It is known that

$$
\begin{aligned}
& x^{2 n-k}(x+2)^{2 n-k}=\binom{2 n-k}{0} 2^{2 n-k} x^{2 n-k}+\binom{2 n-k}{1} 2^{2 n-k-1} x^{2 n-k+1} \\
& +\cdots+\binom{2 n-k}{2 n-k} 2^{0} x^{4 n-2 k} . \quad \begin{array}{c}
\text { (Do NOT } \\
\text { prove this.) }
\end{array}
\end{aligned}
$$

Show that

$$
\binom{4 n}{2 n}=\sum_{k=0}^{n} 2^{2 n-2 k}\binom{2 n}{k}\binom{2 n-k}{k} .
$$

(c) The equation $e^{t}=\frac{1}{t}$ has an approximate solution $t_{0}=0.5$.
(i) Use one application of Newton's method to show that $t_{1}=0.56$ is another approximate solution of $e^{t}=\frac{1}{t}$.
(ii) Hence, or otherwise, find an approximation to the value of r for which the graphs $y=e^{r x}$ and $y=\log _{e} x$ have a common tangent at their point of intersection.

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

