Mathematics Extension 2

General Instructions
- Reading time – 5 minutes
- Working time – 3 hours
- Write using black or blue pen
 Black pen is preferred
- Board-approved calculators may
 be used
- A table of standard integrals is
 provided at the back of this paper
- In Questions 11–16, show
 relevant mathematical reasoning
 and/or calculations

Total marks – 100

Section I Pages 2–6
10 marks
- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 7–17
90 marks
- Attempt Questions 11–16
- Allow about 2 hours and 45 minutes for this section
Section I

10 marks
Attempt Questions 1–10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 Which expression is equal to \(\int \tan x \, dx \)?

(A) \(\sec^2 x + c \)

(B) \(-\ln(\cos x) + c \)

(C) \(\frac{\tan^2 x}{2} + c \)

(D) \(\ln(\sec x + \tan x) + c \)

2 Which pair of equations gives the directrices of \(4x^2 - 25y^2 = 100 \)?

(A) \(x = \pm \frac{25}{\sqrt{29}} \)

(B) \(x = \pm \frac{1}{\sqrt{29}} \)

(C) \(x = \pm \sqrt{29} \)

(D) \(x = \pm \frac{\sqrt{29}}{25} \)
3 The Argand diagram below shows the complex number z.

Which diagram best represents z^2?

(A)

(B)

(C)

(D)

4 The polynomial equation $4x^3 + x^2 - 3x + 5 = 0$ has roots α, β and γ.

Which polynomial equation has roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$?

(A) $4x^3 - 11x^2 + 7x + 5 = 0$
(B) $4x^3 + x^2 - 3x + 6 = 0$
(C) $4x^3 + 13x^2 + 11x + 7 = 0$
(D) $4x^3 - 2x^2 - 2x + 8 = 0$
5 Which region on the Argand diagram is defined by $\frac{\pi}{4} \leq |z-1| \leq \frac{\pi}{3}$?

(A)

(B)

(C)

(D)

6 Which expression is equal to $\int \frac{1}{\sqrt{x^2-6x+5}} \, dx$?

(A) $\sin^{-1}\left(\frac{x-3}{2}\right) + C$

(B) $\cos^{-1}\left(\frac{x-3}{2}\right) + C$

(C) $\ln\left(x-3 + \sqrt{(x-3)^2 + 4}\right) + C$

(D) $\ln\left(x-3 + \sqrt{(x-3)^2 - 4}\right) + C$
7. The angular speed of a disc of radius 5 cm is 10 revolutions per minute. What is the speed of a mark on the circumference of the disc?

(A) 50 cm min$^{-1}$
(B) $\frac{1}{2}$ cm min$^{-1}$
(C) 100π cm min$^{-1}$
(D) $\frac{1}{4\pi}$ cm min$^{-1}$

8. The base of a solid is the region bounded by the circle $x^2 + y^2 = 16$. Vertical cross-sections are squares perpendicular to the x-axis as shown in the diagram.

Which integral represents the volume of the solid?

(A) $\int_{-4}^{4} 4x^2 \, dx$
(B) $\int_{-4}^{4} 4\pi x^2 \, dx$
(C) $\int_{-4}^{4} 4\left(16 - x^2\right) \, dx$
(D) $\int_{-4}^{4} 4\pi \left(16 - x^2\right) \, dx$
Which diagram best represents the graph \(y = \frac{\sin x}{x} \)?

(A)

(B)

(C)

(D)

A hostel has four vacant rooms. Each room can accommodate a maximum of four people.

In how many different ways can six people be accommodated in the four rooms?

(A) 4020

(B) 4068

(C) 4080

(D) 4096
Section II

90 marks

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Let \(z = 2 - i\sqrt{3} \) and \(w = 1 + i\sqrt{3} \).

(i) Find \(z + \bar{w} \). 1

(ii) Express \(w \) in modulus–argument form. 2

(iii) Write \(w^{24} \) in its simplest form. 2

(b) Find numbers \(A \), \(B \) and \(C \) such that

\[
\frac{x^2 + 8x + 11}{(x - 3)(x^2 + 2)} = \frac{A}{x - 3} + \frac{Bx + C}{x^2 + 2}.
\]

2

(c) Factorise \(z^2 + 4iz + 5 \). 2

(d) Evaluate \(\int_{0}^{1} x^3 \sqrt{1 - x^2} \, dx \). 3

(e) Sketch the region on the Argand diagram defined by \(z^2 + \bar{z}^2 \leq 8 \). 3
Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Using the substitution $t = \tan \frac{x}{2}$, or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{4 + 5\cos x} \,dx$.

(b) The equation $\log_{e} y - \log_{e} (1000 - y) = \frac{x}{50} - \log_{e} 3$ implicitly defines y as a function of x.

Show that y satisfies the differential equation $\frac{dy}{dx} = \frac{y}{50} \left(1 - \frac{y}{1000}\right)$.

(c) The diagram shows the region bounded by the graph $y = e^{x}$, the x-axis and the lines $x = 1$ and $x = 3$. The region is rotated about the line $x = 4$ to form a solid.

Find the volume of the solid.

Question 12 continues on page 9
(d) The points \(P \left(cp, \frac{c}{p} \right) \) and \(Q \left(cq, \frac{c}{q} \right) \), where \(|p| \neq |q| \), lie on the rectangular hyperbola with equation \(xy = c^2 \).

The tangent to the hyperbola at \(P \) intersects the \(x \)-axis at \(A \) and the \(y \)-axis at \(B \). Similarly, the tangent to the hyperbola at \(Q \) intersects the \(x \)-axis at \(C \) and the \(y \)-axis at \(D \).

(i) Show that the equation of the tangent at \(P \) is \(x + p^2y = 2cp \). 2

(ii) Show that \(A, B \) and \(O \) are on a circle with centre \(P \). 2

(iii) Prove that \(BC \) is parallel to \(PQ \). 1

End of Question 12
Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Let \(I_n = \int_0^1 \left(1 - x^2\right)^{\frac{n}{2}} \, dx \), where \(n \geq 0 \) is an integer.

(i) Show that \(I_n = \frac{n}{n+1} I_{n-2} \) for every integer \(n \geq 2 \). \(\quad 3 \)

(ii) Evaluate \(I_5 \). \(\quad 2 \)

(b) The diagram shows the graph of a function \(f(x) \).

Sketch the following curves on separate half-page diagrams.

(i) \(y^2 = f(x) \) \(\quad 2 \)

(ii) \(y = \frac{1}{1 - f(x)} \) \(\quad 3 \)

Question 13 continues on page 11
(c) The points A, B, C and D lie on a circle of radius r, forming a cyclic quadrilateral. The side AB is a diameter of the circle. The point E is chosen on the diagonal AC so that $DE \perp AC$. Let $\alpha = \angle DAC$ and $\beta = \angle ACD$.

(i) Show that $AC = 2r \sin (\alpha + \beta)$.

(ii) By considering $\triangle ABD$, or otherwise, show that $AE = 2r \cos \alpha \sin \beta$.

(iii) Hence, show that $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$.

End of Question 13
Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram shows the graph \(y = \ln x \).

By comparing relevant areas in the diagram, or otherwise, show that

\[
\ln t > 2 \left(\frac{t-1}{t+1} \right), \text{ for } t > 1.
\]

(b) Let \(z_2 = 1 + i \) and, for \(n > 2 \), let \(z_n = z_{n-1} \left(1 + \frac{i}{|z_{n-1}|} \right) \).

Use mathematical induction to prove that \(|z_n| = \sqrt{n} \) for all integers \(n \geq 2 \).

Question 14 continues on page 13
(c) (i) Given a positive integer n, show that \[\sec^{2n} \theta = \sum_{k=0}^{n} \binom{n}{k} \tan^{2k} \theta. \]

(ii) Hence, by writing $\sec^8 \theta$ as $\sec^6 \theta \sec^2 \theta$, find $\int \sec^8 \theta \, d\theta$.

(d) A triangle has vertices A, B and C. The point D lies on the interval AB such that $AD = 3$ and $DB = 5$. The point E lies on the interval AC such that $AE = 4$, $DE = 3$ and $EC = 2$.

(i) Prove that $\triangle ABC$ and $\triangle AED$ are similar.

(ii) Prove that $BCED$ is a cyclic quadrilateral.

(iii) Show that $CD = \sqrt{21}$.

(iv) Find the exact value of the radius of the circle passing through the points B, C, E and D.

End of Question 14
Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) The Argand diagram shows complex numbers w and z with arguments ϕ and θ respectively, where $\phi < \theta$. The area of the triangle formed by 0, w and z is A.

Show that $zw - w\overline{z} = 4iA$.

(b) The polynomial $P(x) = ax^4 + bx^3 + cx^2 + e$ has remainder $–3$ when divided by $x - 1$. The polynomial has a double root at $x = -1$.

(i) Show that $4a + 2c = -\frac{9}{2}$.
(ii) Hence, or otherwise, find the slope of the tangent to the graph $y = P(x)$ when $x = 1$.

(c) Eight cars participate in a competition that lasts for four days. The probability that a car completes a day is 0.7. Cars that do not complete a day are eliminated.

(i) Find the probability that a car completes all four days of the competition.
(ii) Find an expression for the probability that at least three cars complete all four days of the competition.

Question 15 continues on page 15
Question 15 (continued)

(d) A ball of mass m is projected vertically into the air from the ground with initial velocity u. After reaching the maximum height H it falls back to the ground. While in the air, the ball experiences a resistive force kv^2, where v is the velocity of the ball and k is a constant.

The equation of motion when the ball falls can be written as

$$m\dot{v} = mg - kv^2.$$ \hspace{1cm} (Do NOT prove this.)

(i) Show that the terminal velocity v_T of the ball when it falls is $\sqrt{\frac{mg}{k}}$. \hspace{1cm} 1

(ii) Show that when the ball goes up, the maximum height H is

$$H = \frac{v_T^2}{2g} \ln \left(1 + \frac{u^2}{v_T^2}\right).$$ \hspace{1cm} 3

(iii) When the ball falls from height H it hits the ground with velocity w. \hspace{1cm} 2

Show that $\frac{1}{w^2} = \frac{1}{u^2} + \frac{1}{v_T^2}$.

End of Question 15
Question 16 (15 marks) Use a SEPARATE writing booklet.

(a)
(i) Find the minimum value of $P(x) = 2x^3 - 15x^2 + 24x + 16$, for $x \geq 0$.

(ii) Hence, or otherwise, show that for $x \geq 0$,

$$(x + 1)\left(x^2 + (x + 4)^2\right) \geq 25x^2.$$

(iii) Hence, or otherwise, show that for $m \geq 0$ and $n \geq 0$,

$$(m + n)^2 + (m + n + 4)^2 \geq \frac{100mn}{m + n + 1}.$$

(b) A small bead P of mass m can freely move along a string. The ends of the string are attached to fixed points S and S', where S' lies vertically above S. The bead undergoes uniform circular motion with radius r and constant angular velocity ω in a horizontal plane.

The forces acting on the bead are the gravitational force and the tension forces along the string. The tension forces along PS and PS' have the same magnitude T.

The length of the string is $2a$ and $SS' = 2ae$, where $0 < e < 1$. The horizontal plane through P meets SS' at Q. The midpoint of SS' is O and $\beta = \angle S'PQ$. The parameter θ is chosen so that $OQ = a \cos \theta$.

Question 16 continues on page 17
Question 16 (continued)

(i) What information indicates that P lies on an ellipse with foci S and S', and with eccentricity e?

(ii) Using the focus–directrix definition of an ellipse, or otherwise, show that $SP = a(1 - e \cos \theta)$.

(iii) Show that $\sin \beta = \frac{e + \cos \theta}{1 + e \cos \theta}$.

(iv) By considering the forces acting on P in the vertical direction, show that

$$mg = \frac{2T(1 - e^2) \cos \theta}{1 - e^2 \cos^2 \theta}.$$

(v) Show that the force acting on P in the horizontal direction is

$$mr \omega^2 = \frac{2T \sqrt{1 - e^2} \sin \theta}{1 - e^2 \cos^2 \theta}.$$

(vi) Show that $\tan \theta = \frac{r \omega^2}{g} \sqrt{1 - e^2}$.

End of paper
STANDARD INTEGRALS

\[\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0 \]

\[\int \frac{1}{x} \, dx = \ln x, \quad x > 0 \]

\[\int e^{ax} \, dx = \frac{1}{a} e^{ax}, \quad a \neq 0 \]

\[\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0 \]

\[\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0 \]

\[\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0 \]

\[\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0 \]

\[\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0 \]

\[\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a \]

\[\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a \]

\[\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 + a^2} \right) \]

NOTE: \quad \ln x = \log_e x, \quad x > 0