

2014 HSC Mathematics Extension 1 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	А
3	С
4	D
5	В
6	В
7	А
8	D
9	С
10	С

Section II

Question 11 (a)

	Criteria	Marks
•	Provides a correct solution	3
•	• Obtains a quadratic in x, or equivalent merit	2
•	• Attempts to solve quadratic in $x + \frac{2}{x}$, or equivalent merit	1

Sample answer:

Let
$$n = x + \frac{2}{x}$$

 $n^2 - 6n + 9 = 0$
 $(n - 3)^2 = 0$ $\therefore n = 3$
Now, $x + \frac{2}{x} = 3$
 $x^2 - 3x + 2 = 0$
 $(x - 2)(x - 1) = 0$
 $x = 2 \text{ or } x = 1$

Question 11 (b)

	Criteria	Marks
•	Provides a correct solution	2
•	Finds a correct expression for the probability of rain on 1 or 2 days, or equivalent merit	1

Sample answer:

$$P(rain) = 0.1$$
 $P(\tilde{rain}) = 1 - 0.1 = 0.9$

Probability that it rains on fewer than 3 days is

$$\binom{30}{0}(0.9)^{30} + \binom{30}{1} \times 0.9^{29} \times 0.1 + \binom{30}{2} 0.9^{28}(0.1)^2$$

Question 11 (c)

	Criteria	Marks
•	Draws a correct sketch	2
•	Draws a graph showing the correct range or shape, or equivalent merit	1

$$y = 6 \tan^{-1} x \qquad \qquad \frac{-\pi}{2} < \frac{y}{6} < \frac{\pi}{2} \\ -3\pi < y < 3\pi$$

Question 11 (d)

	Criteria	Marks
•	Provides a correct solution	3
•	Obtains a correct primitive, or equivalent merit	2
•	Attempts the given substitution, or equivalent merit	1

$$\int_{2}^{5} \frac{x}{\sqrt{x-1}} dx$$

$$x = u^{2} + 1 \qquad | \qquad x = 2 \qquad u = 1$$

$$dx = 2u \, du \qquad | \qquad x = 5 \qquad u = 2$$

$$\int_{1}^{2} \frac{u^{2} + 1}{\lambda} 2\lambda \, du$$

$$= 2 \left[\frac{u^{3}}{3} + u \right]_{1}^{2}$$

$$= 2 \left[\frac{8}{3} + 2 - \frac{1}{3} - 1 \right]$$

$$= 2 \left[\frac{10}{3} \right]$$

$$= \frac{20}{3}$$

Question 11 (e)

	Criteria	Marks
•	Provides a correct solution	3
•	Obtains one correct interval, or equivalent merit	2
•	Obtains a quadratic inequality, or equivalent merit	1

Multiply by
$$x^2$$
:

$$\frac{x^2(x^2+5)}{x} > 6 \times x^2$$
ie $x(x^2+5) > 6x^2$
 $x(x^2+5) - 6x^2 > 0$
 $x(x^2-6x+5) > 0$
 $x(x-5)(x-1) > 0$

 y

 $\therefore 0 < x < 1 \quad \text{or} \quad x > 5$

Question 11 (f)

	Criteria	Marks
•	• Finds the correct derivative	2
•	• Uses an appropriate differentiation rule, or equivalent merit	1

Sample answer:

$$y = \frac{e^{x} \ln x}{x}$$
$$\frac{dy}{dx} = \frac{x\left(e^{x} \cdot \frac{1}{x} + e^{x} \ln x\right) - e^{x} \ln x \cdot 1}{x^{2}}$$
$$= \frac{x\left(\frac{e^{x}}{x} + e^{x} \ln x\right) - e^{x} \ln x}{x^{2}}$$

Question 12 (a)

Question 12 (a) (i)

Criteria	Marks
Provides a correct answer	1

Sample answer:

Distance travelled is (2 + 2) m, ie 4 m.

Question 12 (a) (ii)

	Criteria	Marks
•	Provides a correct solution	2
•	Identifies when the particle is first at rest, or equivalent merit	1

```
When at rest,

\dot{x} = 0 ie 6\cos 3t = 0

\therefore \cos 3t = 0

3t = \frac{\pi}{2}

t = \frac{\pi}{6}

\therefore First at rest when t = \frac{\pi}{6}

Now, x = 2\sin 3t

\dot{x} = 6\cos 3t

\ddot{x} = -18\sin 3t

when t = \frac{\pi}{6}

\ddot{x} = -18\sin \frac{\pi}{2}

= -18 \times 1

acceleration = -18 \text{ m/s}^2
```

Question 12 (b)

	Criteria	Marks
•	Provides a correct solution	3
•	Obtains correct integral expression for volume in terms of $\cos 8x$, or equivalent merit	2
•	Obtains integral expression for volume of the form $k \int_{0}^{\frac{\pi}{8}} \cos^2 4x dx$, or equivalent merit	1

Sample answer:

 $y = \cos 4x$

$$V = \int_0^{\frac{\pi}{8}} \pi y^2 dx$$
$$= \int_0^{\frac{\pi}{8}} \pi \cos^2 4x \, dx$$
$$= \pi \int_0^{\frac{\pi}{8}} \frac{1 + \cos 8x}{2} \, dx$$
$$= \frac{\pi}{2} \left[x + \frac{\sin 8x}{8} \right]_0^{\frac{\pi}{8}}$$
$$= \frac{\pi}{2} \left[\frac{\pi}{8} + 0 - 0 - 0 \right]$$
volume = $\frac{\pi^2}{16}$ unit³

Question 12 (c)

	Criteria	Marks
•	Provides a correct solution	3
•	Obtains expression for v^2 possibly involving an undetermined constant	2
•	Attempts to use $a = \frac{1}{2} \frac{d(v^2)}{dx}$ or equivalent merit	1

Sample answer:

$$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \ddot{x} = 2 - e^{\frac{-x}{2}}$$
$$\frac{1}{2}v^{2} = \int 2 - e^{-\frac{x}{2}} dx$$
$$= 2x - \frac{e^{\frac{-x}{2}}}{-\frac{1}{2}} + c$$
$$= 2x + 2e^{\frac{-x}{2}} + c$$

When x = 0, v = 4

$$\frac{1}{2}(16) = 0 + 2 + c$$

$$c = 6$$

$$\therefore \frac{1}{2}v^2 = 2x + 2e^{-\frac{x}{2}} + 6$$

$$v^2 = 4x + 4e^{\frac{-x}{2}} + 12$$

Question 12 (d)

	Criteria	Marks
•	Provides a correct solution	2
	• Attempts to use the binomial theorem.	1

Sample answer:

Consider $(1 + x)^n$. From the binomial theorem:

$$(1+x)^{n} = {\binom{n}{0}} + {\binom{n}{1}}x + {\binom{n}{2}}x^{2} + \dots + {\binom{n}{n}}x^{n}$$

Let $x = -1$

Let x

$$(1+-1)^{n} = 0 = \binom{n}{0} + \binom{n}{1}(-1) + \binom{n}{2}(-1)^{2} + \dots + \binom{n}{n}(-1)^{n}$$
$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^{n}\binom{n}{n}$$

Question 12 (e)

	Criteria	Marks
,	Provides a valid explanation	1

Sample answer:

The tangent at $x = x_1$ is drawn, and it intersects the x axis at x_2 . As shown in the diagram, x_2 is further away from α than x_1 .

Question 12 (f)

	Criteria	Marks
•	Provides a correct solution	3
•	Obtains A and B, or equivalent merit	2
•	Shows $A - B = 2$, or equivalent merit	1

$$T = A - Be^{-0.03t}$$
As $t \to \infty$, $T \to 23$
 $\therefore A = 23$
 $\therefore T = 23 - Be^{-0.03t}$
 $t = 0$ $T = 2$
 $2 = 23 - B$
 $B = 21$
 $\therefore T = 23 - 21e^{-0.03t}$
Now, when $T = 0$
 $10 = 23 - 21e^{-0.03t}$
 $21e^{-0.03t} = 13$
 $e^{-0.03t} = \frac{13}{21}$
 $-0.03t = \ln\left(\frac{13}{21}\right)$
 $t = \frac{\ln\left(\frac{13}{21}\right)}{-0.03}$
 $= 15.985...!$
 $t \approx 16$ minutes

Question 13 (a)

	Criteria	Marks
•	Provides a correct proof	3
•	Uses inductive assumption, or equivalent merit	2
•	Establishes case for $n = 1$, or equivalent merit	1

Sample answer:

 $2^{n} + (-1)^{n+1}$ $n = 1, 2^{1} + (-1)^{2} = 2 + 1 = 3$ which is divisible by 3

Assume true for n = k

ie Assume $2^k + (-1)^{k+1}$ is divisible by 3

ie $2^k + (-1)^{k+1} = 3M$ where *M* is an integer.

We need to prove true for n = k + 1

ie That $2^{k+1} + (-1)^{k+2}$ is divisible by 3

$$2^{k+1} + (-1)^{k+2} = 2(2^{k}) + (-1)^{k+2}$$

= 2[3M + (-1)^{k+2}] + (-1)^{k+2}
= 3[2M + (-1)^{k+2}]
$$2^{k} = 3M - (-1)^{k+1}$$

= 3M + (-1)^{k+2}

Which is a multiple of 3 since M and k are integers.

ie if $2^k + (-1)^{k+1}$ is divisible by 3, then

- $2^{k+1} + (-1)^{k+1}$ is divisible by 3
- \therefore By the principle of mathematical induction
- $2^n + (-1)^{n+1}$ is divisible by 3 for all $n \ge 1$.

Question 13 (b) (i)

	Criteria	Marks
•	Provides a correct solution	2
•	Uses Pythagoras' Theorem and attempts to differentiate, or equivalent merit	1

Sample answer:

$$L = \sqrt{40^2 + x^2}$$
$$\frac{dL}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{40^2 + x^2}} \cdot 2x$$
$$= \frac{x}{\sqrt{40^2 + x^2}}$$
$$= \frac{x}{L}$$
$$= \cos\theta$$

Question 13 (b) (ii)

	Criteria	Marks
•	Provides a correct solution	1

$$\frac{dL}{dt} = \frac{dL}{dx} \cdot \frac{dx}{dt}$$
$$= \frac{dL}{dx} \cdot 3$$
$$= 3\cos\theta \text{ (from part (i)).}$$

Question 13 (c) (i)

	Criteria	Marks
•	Provides a correct solution	2
•	Establishes one coordinate, or equivalent merit	1

Sample answer:

$$P(2at, at^{2}) = S(0, a)$$

$$t^{2} : 1$$

$$Q = \left[\frac{0 \times t^{2} + 2at}{t^{2} + 1}, \frac{a \times t^{2} + 1 \times at^{2}}{t^{2} + 1}\right]$$

$$Q = \left[\frac{2at}{t^{2} + 1}, \frac{2at^{2}}{t^{2} + 1}\right]$$

Question 13 (c) (ii)

I	Criteria	Marks
I	Provides a correct solution	1

$$m_{OQ} = \frac{\frac{2at^2}{t^2 + 1} - 0}{\frac{2at}{t^2 + 1} - 0}$$
$$= \frac{2at^2}{t^2 + 1} \times \frac{t^2 + 1}{2at}$$
$$= t$$

Question 13 (c) (iii)

	Criteria	Marks
•	Provides a correct solution	3
•	Obtains an equation in x, y and a	2
•	Attempts to use part (ii), or equivalent merit	1

Sample answer:

$$x = \frac{2at}{t^2 + 1} \quad y = \frac{2at^2}{t^2 + 1}$$

$$m_{OQ} = t = \frac{y}{x} \text{ (from part (ii))}$$

$$\therefore x = \frac{2a\frac{y}{x}}{\frac{y^2}{x^2} + 1}$$

$$x = \frac{2axy}{y^2 + x^2}$$

$$x \left(x^2 + y^2\right) = 2ax y, \text{ for } x \neq 0$$

$$x^2 + y^2 = 2ay$$

$$x^2 + y^2 - 2ay = 0$$

$$x^2 + y^2 - 2ay + a^2 = a^2$$

$$x^2 + (y - a)^2 = a^2$$

which is a circle of centre (0,a) and radius a units and point Q lies on this circle.

Question 13 (d)

Question 13 (d) (i)

	Criteria	Marks
•	Provides a correct explanation	1

Sample answer:

$\angle BAC = \angle CQP$

(ABQP is a cyclic quadrilateral; exterior angle equals interior opposite angle)

Question 13 (d) (ii)

	Criteria	Marks
•	Provides a correct proof	2
•	Observes that $\triangle OPA$ is isosceles, or equivalent merit	1

Sample answer:

From (i) $\angle OAP = \angle PQC = \alpha$ $\angle OAP = \angle OPA = \alpha (OA = OP \text{ radii; angles opposite equal sides of } \triangle OAP \text{ are equal})$

 $\angle OPA = \angle TPC = \alpha$ (vertically opposite angles equal)

 $\therefore \angle TPC = \angle PQC = \alpha$

 \therefore *OP* is a tangent to circle through *P*, *Q*, *C*, since the angle between a tangent (*OP*) and a chord (*CP*) is equal to the angle in the alternate segment.

Question 14 (a) (i)

	Criteria	Marks
•	Provides a correct solution	2
•	Attempts to eliminate t, or equivalent merit	1

$$x = Vt\cos\theta, y = -\frac{1}{2}gt^{2} + Vt\sin\theta$$
$$t = \frac{x}{V\cos\theta}$$
$$y = -\frac{1}{2}g \cdot \frac{x^{2}}{V^{2}\cos^{2}\theta} + V \cdot \frac{x}{V\cos\theta} \cdot \sin\theta$$
$$= \frac{-gx^{2}}{2V^{2}}\sec^{2}\theta + x\tan\theta$$

Question 14 (a) (ii)

	Criteria	Marks
•	Provides a correct solution	3
•	Obtains the x coordinate of P, or equivalent merit	2
•	Obtains an equation in x, or equivalent merit	1

Sample answer:

P is the point of intersection of

$$y = x \tan \theta - \frac{gx^2}{2V^2} \sec^2 \theta \quad \text{and } y = -x$$

$$\therefore -x = x \tan \theta - \frac{gx^2}{2V^2} \sec^2 \theta$$

$$x = \frac{gx^2}{2V^2} \sec^2 \theta - x \tan \theta$$

$$x(1 + \tan \theta) = \frac{gx^2}{2V^2} \sec^2 \theta /$$

$$x \left[\frac{gx \sec^2 \theta}{2V^2} - (1 + \tan \theta)^2 \right] = 0$$

$$\therefore x = 0 \text{ or } \frac{gx \sec^2 \theta}{2V^2} = 1 + \tan \theta$$

$$\frac{gx}{2V^2 \cos^2 \theta} = 1 + \frac{\sin \theta}{\cos \theta} /$$

$$x = \frac{2V^2}{g} \cos^2 \theta + \frac{2V^2}{g} \frac{\sin \theta \cdot \cos^2 \theta}{\cos \theta} \quad (\cos \theta \neq 0)$$

$$= \frac{2V^2}{g} \cos \theta (\cos \theta + \sin \theta)$$

Since $D^2 = 2x^2, x = \frac{D}{\sqrt{2}}$
$$\therefore \frac{D}{\sqrt{2}} = \frac{2V^2}{g} \cos \theta (\sin \theta + \cos \theta)$$

$$D = 2\sqrt{2} \frac{V^2}{g} \cos \theta (\sin \theta + \cos \theta)$$

Question 14 (a) (iii)

Criteria	Marks
Provides a correct solution	2
Uses double-angle formulae, or equivalent merit	1

$$D = 2\sqrt{2} \frac{V^2}{g} \left[\cos^2 \theta + \sin \theta \cos \theta \right]$$
$$= 2\sqrt{2} \frac{V^2}{g} \left[\frac{1 + \cos 2\theta}{2} + \frac{1}{2} \sin 2\theta \right]$$
$$= \frac{2\sqrt{2}V^2}{2g} \left[1 + \cos 2\theta + \sin 2\theta \right]$$
$$\frac{dD}{d\theta} = \sqrt{2} \frac{V^2}{g} \left[-2\sin 2\theta + 2\cos 2\theta \right]$$
$$= 2\sqrt{2} \frac{V^2}{g} \left[\cos 2\theta - \sin 2\theta \right]$$

Question 14 (a) (iv)

	Criteria	Marks
•	Provides a correct solution	3
•	Obtains $\theta = \frac{\pi}{8}$, or equivalent merit	2
•	Attempts to solve $\frac{dD}{d\theta} = 0$, or equivalent merit	1

Sample answer:

D has a maximum value when $\frac{dD}{d\theta} = 0$ ie $\sin 2\theta = \cos 2\theta$ $\tan 2\theta = 1$

$$\tan 2\theta = 1$$

$$2\theta = \frac{\pi}{4}$$

$$\theta = \frac{\pi}{8}$$

$$\frac{d^2 D}{d\theta^2} = 2\sqrt{2} \frac{V^2}{g} (-2\sin 2\theta - 2\cos 2\theta)$$

$$= -4\sqrt{2} \frac{V^2}{g} (\sin 2\theta + \cos 2\theta)$$
for $\theta = \frac{\pi}{8}$, $\sin 2\theta + \cos 2\theta > 0$

$$\therefore \frac{d^2 D}{d\theta^2} < 0$$

 $\therefore D$ is maximum when $\theta = \frac{\pi}{8}$

Question 14 (b) (i)

	Criteria	Marks
•	Provides a correct solution	2
•	Shows probability that A wins on second turn is rq, or equivalent merit	1

Sample answer:

P(A wins on 1st or 2nd) = p + rq

$$= p + r(1 - (p + r))$$

= p + r - pr - r²
= p(1 - r) + r(1 - r)
= (1 - r)(p + r)

Question 14 (b) (ii)

	Criteria	Marks
•	Provides a correct solution	3
•	Observes limiting probability is a geometric series, or equivalent merit	2
•	Finds probability that A wins on third turn, or equivalent merit	1

Sample answer:

 $P(A \text{ wins eventually}) = p + rq + r^{2}p + r^{3}q + ...$ = $p(1 + r^{2} + r^{4} + ...) + rq(1 + r^{2} + r^{4} + ...)$ = $(p + rq)(1 + r^{2} + r^{4} + ...)$ = $(p + rq) \times \frac{1}{1 - r^{2}}$ = $(1 - r)(p + r) \times \frac{1}{(1 + r)(1 - r)}$ (using part(i)) = $\frac{p + r}{1 + r}$

Mathematics Extension 1 2014 HSC Examination Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	2.8	PE3
2	1	5.7	PE2
3	1	17.3	HE3
4	1	6.6	PE6, PE2
5	1	16.3	PE3
6	1	15.5	HE4
7	1	14.4	HE3
8	1	18.1	PE3
9	1	16.2	PE3
10	1	4.3	PE2, P4

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	3	9.4	PE3, P4
11 (b)	2	18.2	HE3
11 (c)	2	15.3	HE4
11 (d)	3	11.5	HE6
11 (e)	3	1.4E	PE3
11 (f)	2	8.8, 12.5	P7, H3, PE5
12 (a) (i)	1	14.4	HE3
12 (a) (ii)	2	14.4	HE3
12 (b)	3	11.4, 13.6	Н8
12 (c)	3	14.3E	HE5
12 (d)	2	17.3E	HE3, HE7
12 (e)	1	16.4	HE7, PE6
12 (f)	3	14.2E	HE3
13 (a)	3	7.4	HE2, PE6
13 (b) (i)	2	5.1, 8.8	P4, P7, PE6
13 (b) (ii)	1	14.1E	HE5, PE6
13 (c) (i)	2	6.7E, 9.6	PE3
13 (c) (ii)	1	9.6	PE3
13 (c) (iii)	3	9.6	PE3
13 (d) (i)	1	2.10	PE3, PE6
13 (d) (ii)	2	2.9, 2.10	PE3, PE6
14 (a) (i)	2	14.3E	HE3

Question	Marks	Content	Syllabus outcomes
14 (a) (ii)	3	14.3E	HE3
14 (a) (iii)	2	14.3, 5.7, 13.7	HE3, H5
14 (a) (iv)	3	5.2, 10.6	HE3, H5
14 (b) (i)	2	3.3	H5, HE7, PE6
14 (b) (ii)	3	3.3	H5, HE7, PE6