

2014 HSC Mathematics Extension 2 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	А
3	В
4	С
5	С
6	D
7	В
8	В
9	А
10	D

Section II

Question 11 (a) (i)

Criteria	Marks
Provides a correct solution	2
• Finds modulus or argument, or equivalent merit	1

Sample answer:

$$z + w = (-2 - 2i) + 3 + i = 1 - i$$
$$|z + w| = \sqrt{2}, \quad \arg(z + w) = \frac{-\pi}{4}$$
$$\operatorname{so} z + w = \sqrt{2} \left[\cos\left(\frac{-\pi}{4}\right) + i \sin\left(\frac{-\pi}{4}\right) \right]$$

Question 11 (a) (ii)

Criteria	Marks
Provides a correct solution	2
Identifies conjugate, or equivalent merit	1

$$\frac{z}{w} = \frac{-2 - 2i}{3 + i} \times \frac{3 - i}{3 - i}$$
$$= \frac{-8 - 4i}{10}$$
$$= \frac{-4 - 2i}{5}$$
$$= \frac{-4}{5} - \frac{2}{5}i$$

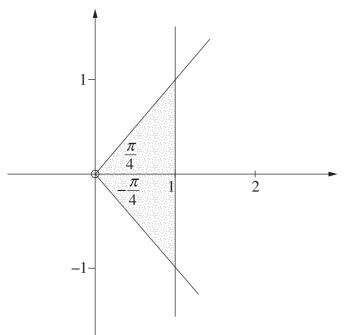
Question 11 (b)

Criteria	Marks
Provides a correct solution	3
• Correctly uses limits in one of two terms, or equivalent merit	2
Attempts integration by parts, or equivalent merit	1

$$\int_{0}^{\frac{1}{2}} (3x-1)\cos \pi x \, dx = \left[(3x-1)\frac{\sin \pi x}{\pi} \right]_{0}^{\frac{1}{2}} - \int_{0}^{\frac{1}{2}} \frac{3}{\pi} \sin \pi x \, dx$$
$$= \frac{1}{2\pi} - \left[\frac{-3}{\pi^{2}} \cos \pi x \right]_{0}^{\frac{1}{2}}$$
$$= \frac{1}{2\pi} - \frac{3}{\pi^{2}}$$

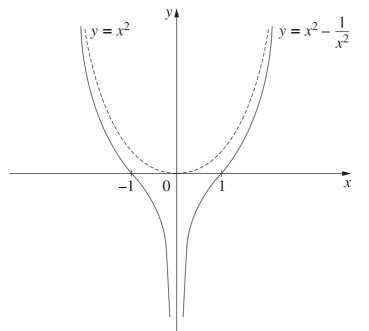
Question 11 (c)

Criteria	Marks
Draws a correct sketch	3
• Correctly shows region satisfying $ z \le z-2 $, or equivalent merit	2
• Correctly shows region satisfying $-\frac{\pi}{4} \le \arg(z) \le \frac{\pi}{4}$, or equivalent merit	1



Question 11 (d)

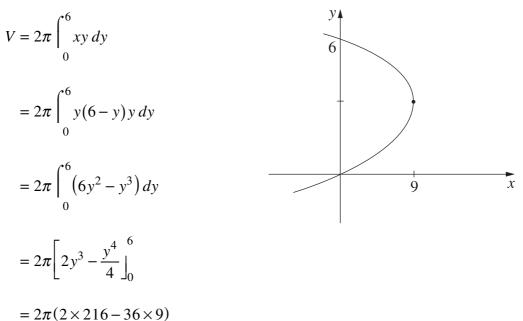
Criteria	Marks
Draws correct sketch	2
• Sketches a graph with correct <i>x</i> -intercepts, or equivalent merit	1



Question 11 (e)

Criteria	Marks
Provides a correct solution	3
• Attempts to evaluate the integral for the volume, or equivalent merit	2
• Applies a formula for the volume by cylindrical shells, or equivalent merit	1

Sample answer:

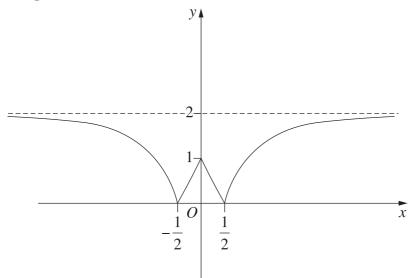


Volume = 216π units³

Question 12 (a) (i)

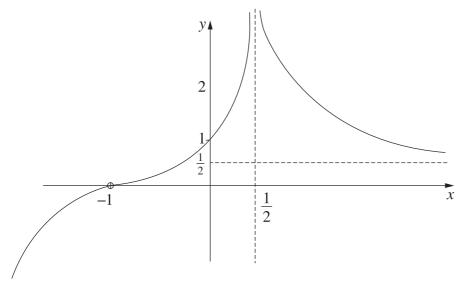
Criteria	Marks
Draws a correct sketch	2
• Sketches graph symmetric with respect to <i>y</i> -axis or equivalent merit	1

Sample answer:



Question 12 (a) (ii)

Criteria	Marks
Draws a correct sketch	2
• Shows asymptote at $x = \frac{1}{2}$, or $y = \frac{1}{2}$ or equivalent merit	1



Question 12 (b) (i)

Criteria	Marks
Provides a correct solution	1

Sample answer:

Substituting $x = 2\cos\theta$

$$8\cos^{3}\theta - 6\cos\theta = \sqrt{3}$$

so
$$4\cos^{3}\theta - 3\cos\theta = \frac{\sqrt{3}}{2}$$
$$\therefore \cos 3\theta = \frac{\sqrt{3}}{2}$$

Question 12 (b) (ii)

Criteria	Marks
Provides a correct solution	2
Finds one real solution, or equivalent merit	1

Sample answer:

$$\cos 3\theta = \frac{\sqrt{3}}{2}$$

so $3\theta = \frac{\pi}{6}, \frac{11\pi}{6}, \frac{12\pi}{6}$
 $\therefore \theta = \frac{\pi}{18}, \frac{11\pi}{18}, \frac{13\pi}{18}$

Solutions are

$$x = 2\cos\frac{\pi}{18}, 2\cos\frac{11\pi}{18}, 2\cos\frac{13\pi}{18}$$

Question 12 (c)

Criteria	Marks
Provides a correct solution	3
• Finds the slope of one curve, and attempts to find slope of other curve, or equivalent merit	2
• Attempts to find slope at (x ₀ , y ₀) of one curve using implicit differentiation, or equivalent merit	1

Sample answer:

$$x^2 - y^2 = 5$$

Differentiating with respect to *x*:

$$2x - 2y \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{x}{y}$$

at point (x_0, y_0) slope is $m_1 = \frac{x_0}{y_0}$

$$xy = 6 \qquad (x, y \neq 0)$$

Differentiating with respect to *x*:

$$y + x\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{y}{x}$$

at point (x_0, y_0) slope is $m_2 = -\frac{y_0}{x_0}$

If curves meet then $x_0, y_0 \neq 0$

and
$$m_1 \times m_2 = \frac{x_0}{y_0} \times \frac{-y_0}{x_0} = -1$$

Then tangents are perpendicular.

Question 12 (d) (i)

Criteria	Marks
Provides a correct solution	1

Sample answer:

$$I_{0} = \int_{0}^{1} \frac{1}{x^{2} + 1} dx$$
$$= \left[\tan^{-1} x \right]_{0}^{1}$$
$$= \frac{\pi}{4}$$

Question 12 (d) (ii)

Criteria	Marks
Provides a correct solution	2
• Writes the sum as a single integral, or equivalent merit	1

$$I_n + I_{n-1} = \int_0^1 \left(\frac{x^{2n}}{x^2 + 1} + \frac{x^{2n-2}}{x^2 + 1} \right) dx$$
$$= \int_0^1 \frac{x^{2n-2} (x^2 + 1)}{(x^2 + 1)} dx$$
$$= \int_0^1 x^{2n-2} dx$$
$$= \left[\frac{1}{2n-1} x^{2n-1} \right]_0^1$$
$$= \frac{1}{2n-1} (1-0)$$
$$= \frac{1}{2n-1}$$

Question 12 (d) (iii)

Criteria	Marks
Provides a correct answer	2
• Attempts to apply the recursion relation from part (ii), or equivalent merit	1

Sample answer:

$$\int_{0}^{1} \frac{x^4}{x^2 + 1} dx = I_2$$

Now, $I_2 + I_1 = \frac{1}{3}$

$$I_1 + I_0 = 1$$

Subtracting:

$$I_{2} - I_{0} = \frac{1}{3} - 1$$
$$= -\frac{2}{3}$$
$$\therefore I_{2} = I_{0} - \frac{2}{3}$$
$$= \frac{\pi}{4} - \frac{2}{3}$$

1

Question 13 (a)

Criteria	Marks
Provides a correct solution	3
• Finds a correct primitive, or equivalent merit	2
• Attempts to obtain an integral in terms of <i>t</i> , or equivalent merit	1

$$t = \tan \frac{x}{2}, \quad \sin x = \frac{2t}{1+t^2}, \quad \cos x = \frac{1-t^2}{1+t^2}$$
$$\frac{dt}{dx} = \frac{1}{2}\sec^2 \frac{x}{2} = \frac{1}{2}\left(1 + \tan^2 \frac{x}{2}\right)$$
$$= \frac{1}{2}(1+t^2)$$
$$\therefore \ dx = \frac{2dt}{1+t^2}$$
when $x = \frac{\pi}{2}, \quad t = 1$ and when $x = \frac{\pi}{3}, \quad t = \frac{1}{\sqrt{3}}$

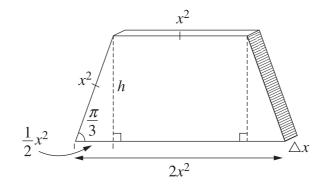
Question 13 (a) Sample answer – continued:

$$I = \frac{2}{\int \frac{1}{\sqrt{3}} 3\left(\frac{2t}{1+t^2}\right) - 4\left(\frac{1-t^2}{1+t^2}\right) + 5} \times \frac{1}{(1+t^2)} dt$$
$$= \frac{1}{\int \frac{1}{\sqrt{3}} \frac{2dt}{6t - 4 + 4t^2 + 5 + 5t^2}$$
$$= \frac{1}{\int \frac{1}{\sqrt{3}} \frac{2dt}{9t^2 + 6t + 1}}$$
$$= 2\frac{1}{\int \frac{1}{\sqrt{3}} \frac{dt}{(3t+1)^2}}$$
$$= -\frac{2}{3} \left[\frac{1}{3t+1}\right]_{\frac{1}{\sqrt{3}}}^{1}$$
$$= -\frac{2}{3} \left(\frac{1}{4} - \frac{1}{\sqrt{3}+1}\right) |$$
$$= -\frac{2}{3} \left(\frac{1}{4} - \frac{\sqrt{3}-1}{2}\right)^{\frac{1}{3}}$$
$$= \frac{2\sqrt{3}-3}{6}$$

Question 13 (b)

Criteria	Marks
Provides a correct solution	4
• Finds an expression for the volume of the solid	3
• Finds the area of each cross-section, or equivalent merit	2
• Finds the height of each trapezium, or equivalent merit	1

Sample answer:



$$h = x^2 \sin \frac{\pi}{3} = x^2 \frac{\sqrt{3}}{2}$$

Area of cross-section $= \frac{1}{2} \times x^2 \frac{\sqrt{3}}{2} (x^2 + 2x^2)$ $= \frac{\sqrt{3}}{4} x^2 \cdot 3x^2$ $= \frac{3\sqrt{3}}{4} x^4$

Volume of the slice $=\frac{3\sqrt{3}}{4}x^4 \triangle x$

:. Volume of the solid = $\int_{0}^{2} \frac{3\sqrt{3}}{4} x^{4} dx$

$$= \frac{3\sqrt{3}}{4} \left[\frac{x^5}{5} \right]_0^2$$
$$= \frac{3\sqrt{3}}{4 \times 5} (2^5)$$
$$= \frac{24\sqrt{3}}{5} \text{ unit}^3$$

Question 13 (c) (i)

Criteria	Marks
Provides a correct solution	1

Sample answer:

$$M\left(\frac{a}{2}\left(t+\frac{1}{t}\right),\frac{b}{2}\left(t-\frac{1}{t}\right)\right)$$

Substituting for *x* and *y*,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{1}{4} \left(t + \frac{1}{t} \right)^2 - \frac{1}{4} \left(t - \frac{1}{t} \right)^2$$
$$= \frac{1}{4} \left(t + \frac{1}{t} + t - \frac{1}{t} \right) \left(\lambda + \frac{1}{t} - \lambda + \frac{1}{t} \right)$$
$$= \frac{1}{4} 2t \cdot \frac{2}{t}$$
$$= 1$$

So M lies on the hyperbola.

Question 13 (c) (ii)

Criteria	Marks
Provides a correct proof	3
• Finds the slope of the tangent, or equivalent merit	2
• Finds slope of <i>PQ</i> , or attempts to find the slope of the tangent, or equivalent merit	1

Sample answer:

Slope of PQ is
$$\frac{bt + \frac{b}{t}}{at - \frac{a}{t}} = \frac{b\left(t + \frac{1}{t}\right)}{a\left(t - \frac{1}{t}\right)}$$

Differentiating
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 with respect to x:
$$\frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dt} = 0$$
$$\frac{dy}{dt} = \frac{xb^2}{ya^2}$$

at M
$$\frac{dy}{dt} = \frac{\frac{a}{2}\left(t + \frac{1}{t}\right)b^2}{\frac{b}{2}\left(t - \frac{1}{t}\right)a^2}$$
$$= \frac{b\left(t + \frac{1}{t}\right)}{a\left(t - \frac{1}{t}\right)}$$
$$= \text{ slope of } PQ$$

so PQ is a tangent to hyperbola at M

Question 13 (c) (iii)

Criteria	Marks
Provides a correct solution	2
• Finds $OP \times OQ$ in terms of a and b, or equivalent merit	1

$$OP = \sqrt{(a^2 + b^2)t^2}$$
$$OQ = \sqrt{\frac{a^2 + b^2}{t^2}}$$
$$\therefore OP \times OQ = a^2 + b^2$$
$$OS^2 = a^2e^2$$
$$= a^2\left(1 + \frac{b^2}{a^2}\right)$$
$$= a^2 + b^2$$
$$= OP \times OQ$$

Question 13 (c) (iv)

Criteria	Marks
Provides a correct solution	2
• Finds one coordinate of <i>M</i> in terms of <i>a</i> , <i>b</i> and <i>e</i> , or equivalent merit	1

Sample answer:

Equations of asymptotes are $y = \pm \frac{b}{a}x$

If at = ae then t = e.

The coords of *M* are then
$$\left(\frac{a}{2}\left(e+\frac{1}{e}\right), \frac{b}{2}\left(e-\frac{1}{e}\right)\right)$$

slope of MS is

$$\frac{\frac{b}{2}\left(e-\frac{1}{e}\right)}{\frac{a}{2}\left(e+\frac{1}{e}\right)-ae} = \frac{b\left(e-\frac{1}{e}\right)}{ae+\frac{a}{e}-2ae}$$
$$= \frac{b\left(e-\frac{1}{e}\right)}{a\left(\frac{1}{e}-e\right)}$$
$$= -\frac{b}{a}$$

which is the slope of one of the asymptotes and so MS is parallel to it.

Question 14 (a) (i)

Criteria	Marks
Provides a correct solution	2
• Shows that $P''(1) = 0$, or equivalent merit	1

Sample answer:

 $P'(x) = 5x^{4} - 20x + 15$ $P''(x) = 20x^{3} - 20$ P(1) = 1 - 10 + 15 - 6 = 0 P'(1) = 5 - 20 + 15 = 0 P''(1) = 20 - 20 = 0 $\therefore x = 1 \text{ is a root of multiplicity } 3$

Question 14 (a) (ii)

Criteria	Marks
Provides a correct solution	2
• Finds product and sum of remaining two roots, or equivalent merit	1

Sample answer:

Let other roots be α, β

 $\alpha + \beta + 1 + 1 + 1 = 0 \qquad , \qquad \alpha \beta(1)(1)(1) = 6$ $\alpha + \beta = -3 \qquad \qquad \alpha \beta = 6$

Hence, α and β are the solutions to $x^2 + 3x + 6 = 0$

$$x = \frac{-3 \pm \sqrt{9 - 4(1)(6)}}{2}$$
$$= \frac{-3 \pm \sqrt{-15}}{2}$$
$$= \frac{-3 \pm \sqrt{15}i}{2}$$

The complex roots are $\frac{-3 + \sqrt{15}i}{2}, \frac{-3 - \sqrt{15}i}{2}$

Question 14 (b) (i)

Criteria	Marks
Provides a correct solution	3
• Uses the slopes of <i>OP</i> and the normal in a correct expression for $\tan \phi$, or equivalent merit	2
• Finds the slope of the tangent at <i>P</i> , or equivalent merit	1

Sample answer:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Differentiating with respect to *x*:

$$\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{xb^2}{ya^2}$$

slope of tangent at *P* is $-\frac{b\cos\theta}{a\sin\theta}$ slope of normal at *P* is $m_1 = \frac{a\sin\theta}{b\cos\theta}$ slope of *OP* is $m_2 = \frac{b\sin\theta}{a\cos\theta}$ Hence, $\tan \phi = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$ $= \left| \frac{\frac{a}{b} \frac{\sin \theta}{\cos \theta} - \frac{b}{a} \frac{\sin \theta}{\cos \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} \right|$ $= \frac{\frac{\sin\theta}{\cos\theta} \left(\frac{a}{b} - \frac{b}{a}\right)}{\frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta}}$ $=\frac{\left(\frac{a^2-b^2}{ab}\right)\frac{\sin\theta}{\cos\theta}\cdot\cos^2\theta}{\cos^2\theta+\sin^2\theta}, a > b$ $=\frac{a^2-b^2}{ab}\sin\theta\cos\theta$

Question 14 (b) (ii)

Criteria	Marks
Provides a correct solution	2
Uses double angle formula, or equivalent merit	1

Sample answer:

$$\tan\phi = \left(\frac{a^2 - b^2}{ab}\right) \frac{\sin 2\theta}{2}$$

as sin x has maximum at $x = \frac{\pi}{2}$

 $\tan\phi$ has maximum at $2\theta = \frac{\pi}{2}$

 $\therefore \phi$ is a maximum when $\theta = \frac{\pi}{4}$

Question 14 (c) (i)

Criteria	Marks
Provides a correct solution	2
• Finds $m\ddot{x} = F - kv^2$, or equivalent merit	1

Sample answer:

From Newton's second law $m\ddot{x} = F - kv^2$

The terminal velocity (v = 300) occurs when $\ddot{x} = 0$, so

$$F = k \times (300)^{2}, \text{ or } k = \frac{F}{(300)^{2}}$$

Hence $m\ddot{x} = F - \frac{F}{(300)^{2}}v^{2}$
$$= F\left(1 - \left(\frac{v}{300}\right)^{2}\right)$$

Question 14 (c) (ii)

Criteria	Marks
Provides a correct solution	4
• Obtains an expression for <i>t</i> in terms of <i>v</i> , or equivalent merit	3
• Attempts to use partial fractions to find <i>t</i> in terms of <i>v</i> , or equivalent merit	2
• Obtains an equation relating <i>t</i> and <i>v</i> involving integrals, or equivalent merit	1

$$m\frac{dv}{dt} = F\left(1 - \left(\frac{v}{300}\right)^2\right)$$

$$\int \frac{dv}{1 - \left(\frac{v}{300}\right)^2} = \int \frac{F}{m} dt$$

$$\frac{F}{m}t = \int \frac{1}{\left(1 - \frac{v}{300}\right)\left(1 + \frac{v}{300}\right)} dv$$

$$= \frac{1}{2} \int \frac{1}{1 - \frac{v}{300}} + \frac{1}{1 + \frac{v}{300}} dv$$
$$= \frac{300}{2} \left[\ln \left(1 + \frac{v}{300} \right) - \ln \left(1 - \frac{v}{300} \right) \right] + c$$

$$v = 0$$
 when $t = 0 \implies c = 0$

Thus
$$t = \frac{m}{F} \times 150 \ln \left(\frac{1 + \frac{v}{300}}{1 - \frac{v}{300}} \right)$$

= $\frac{150m}{F} \ln \left(\frac{300 + v}{300 - v} \right)$
Put $v = 200, t = \frac{150m}{F} \ln 5$

Question 15 (a)

Criteria	Marks
Provides a correct solution	2
• Expands $(a + b + c)^2$ and attempts to use the relative sizes of <i>a</i> , <i>b</i> or <i>c</i> , or equivalent merit	1

Sample answer:

 $a+b+c = 1, \quad a \le b \le c$ So $(a+b+c)^2 = 1$ LHS $= a^2 + b^2 + c^2 + 2(ab+bc+ac)$ $\ge a^2 + b^2 + c^2 + 2(a^2 + b^2 + a^2)$ (since $b \ge a, c \ge b, c \ge a$) \therefore LHS $\ge 5a^2 + 3b^2 + c^2$ $\therefore 5a^2 + 3b^2 + c^2 \le 1$

Question 15 (b) (i)

Criteria	Marks
Provides a correct solution	2
• Writes $1 + i$ or $1 - i$ in modulus argument form, or equivalent merit	1

Sample answer:

Write (1 + i) and (1 - i) in modulus-argument form:

$$1+i = \sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right) \quad \text{and} \quad 1-i = \sqrt{2} \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)$$
$$= \sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right) \quad = \sqrt{2} \left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4} \right)$$
$$= \sqrt{2} \left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right)$$

Using de Moivre's theorem

$$(1+i)^n = \left[\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right]^n$$
$$= \left(\sqrt{2}\right)^n \left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right)$$

and

$$(1-i)^{n} = \left[\sqrt{2}\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right)\right]^{n}$$
$$= (\sqrt{2})^{n}\left(\cos\left(\frac{-n\pi}{4}\right) + i\sin\left(\frac{-n\pi}{4}\right)\right)$$
$$= \sqrt{2}^{n}\left(\cos\frac{n\pi}{4} - i\sin\frac{n\pi}{4}\right)$$

adding

$$(1+i)^n + (1-i)^n = 2(\sqrt{2})^n \cos\frac{n\pi}{4}$$

Question 15 (b) (ii)

Criteria	Marks
Provides a correct solution	3
• Attempts to add two binomial expressions, or equivalent merit	2
• Applies the binomial theorem to $(1 + i)^n$ or $(1 - i)^n$, or equivalent merit	1

Sample answer:

Using the binomial theorem

$$(1+i)^{n} = \sum_{k=0}^{n} \binom{n}{k} i^{k}$$
$$= \binom{n}{0} + \binom{n}{1} i - \binom{n}{2} - \binom{n}{3} i + \binom{n}{4} + \dots + \binom{n}{n}$$

and

$$(1-i)^{n} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} i^{k}$$
$$= \binom{n}{0} - \binom{n}{1} i - \binom{n}{2} + \binom{n}{3} i + \binom{n}{4} - \dots + \binom{n}{n}$$

The last terms are positive since n is divisible by 4

Adding the identities

$$(1+i)^{n} + (1-i)^{n}$$

$$= 2 \left[\begin{pmatrix} p \\ p \end{pmatrix} - \begin{pmatrix} p \\ p \end{pmatrix} + \dots + \begin{pmatrix} p \\ p \end{pmatrix} \right] \right]$$

Combining this with the expressions from (i) for $(1+i)^n + (1-i)^n$

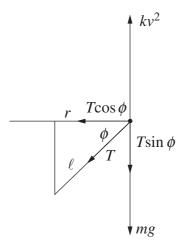
$$\binom{n}{0} - \binom{n}{2} + \dots + \binom{n}{n} = (\sqrt{2})^n \cos \frac{n\pi}{4}$$
$$= \sqrt{2}^n (-1)^{\frac{n}{4}}$$
since $\cos \frac{n\pi}{4} = -1$ for odd multiples of $\pi \left(\frac{n}{4} \text{ odd}\right)$

= 1 for even multiples of
$$\pi\left(\frac{n}{4} \text{ even}\right)$$

Question 15 (c) (i)

Criteria	Marks
Provides a correct solution	3
• Resolves forces in both directions and eliminates <i>r</i> , or equivalent merit	2
Resolves forces in one direction, or equivalent merit	1

Sample answer:



Vertical

 $kv^2 = T\sin\phi + mg$

$$T\sin\phi = kv^2 - mg$$

Horizontal $T\cos\phi = \frac{mv^2}{r}$
$$= \frac{mv^2}{\ell\cos\phi}$$
 $T\cos^2\phi = \frac{mv^2}{\ell}$
$$\therefore \frac{T\sin\phi}{T\cos^2\phi} = \frac{kv^2 - mg}{\frac{mv^2}{\ell}}$$
ie $\frac{\sin\phi}{\cos^2\phi} = \frac{k\ell}{m} - \frac{g\ell}{v^2}$

Question 15 (c) (ii)

Criteria	Marks
Provides a correct solution	2
• Obtains a quadratic inequality in sin¢ and attempts to solve it, or equivalent merit	1

Sample answer:

$$\cos^2 \phi > 0$$
 so
 $\sin \phi < \frac{\ell k}{m} \cos^2 \phi$
 $= \frac{\ell k}{m} (1 - \sin^2 \phi)$
 $\therefore \frac{m}{\ell k} \sin \phi < 1 - \sin^2 \phi$

 m, ℓ, k all positive

$$\sin^2 \phi + \frac{m}{\ell k} \sin \phi - 1 < 0$$

$$\sin \phi < \frac{-\frac{m}{\ell k} + \sqrt{\frac{m^2}{\ell^2 k^2} + 4}}{2} \quad \left(as \ \phi < \frac{\pi}{2}\right)$$

$$= \frac{\frac{-m}{\ell k} + \frac{1}{\ell k} \sqrt{m^2 + 4\ell^2 k^2}}{2}$$

$$\therefore \sin \phi < \frac{-m + \sqrt{m^2 + 4\ell^2 k^2}}{2\ell k}$$

Question 15 (c) (iii)

Criteria	Marks
Provides a correct solution	2
• Differentiates the given expression with respect to ϕ , or equivalent merit	1

Sample answer:

$$F(\phi) = \frac{\sin\phi}{\cos^2\phi}$$

$$F'(\phi) = \frac{\cos^3\phi + 2\sin^2\phi\cos\phi}{\cos^4\phi}$$

$$> 0 \left(\text{as, for } -\frac{\pi}{2} < \phi < \frac{\pi}{2}, \ \cos^3\phi > 0, \cos\phi > 0, \sin^2\phi > 0 \text{ and } \cos^4\phi > 0 \right)$$

 \therefore *F* is increasing.

Question 15 (c) (iv)

Criteria	Marks
Provides a correct explanation	1

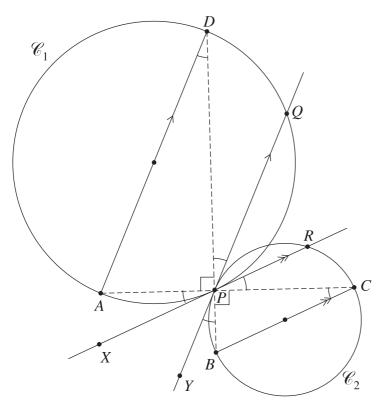
Sample answer:

As v increases
$$\frac{\ell g}{v^2}$$
 decreases, so $\frac{\ell k}{m} - \frac{\ell g}{v^2}$ increases.

That is,
$$\frac{\sin\phi}{\cos^2\phi}$$
 increases.

By (iii) $\frac{\sin\phi}{\cos^2\phi}$ is an increasing function and so ϕ increases as *v* increases.

Question 16 (a)



Question 16 (a) (i)

Criteria	Marks
Provides a correct solution	2
• Uses angles on alternate segment, or equivalent merit	1

Sample answer:

 $\angle APX = \angle ADP$ (The \angle between a tangent and a chord equals the angle in the alternate segment).

 $\angle ADP = \angle DPQ$ (Alternate $\angle s$, $AD \parallel PQ$)

 $\therefore \angle APX = \angle DPQ$

Question 16 (a) (ii)

Criteria	Marks
Provides a correct solution	3
Makes significant progress towards the solution	2
• Observes result similar to that in part (i) in the other circle, or uses angle in semicircle, or equivalent merit	1

Sample answer:

Using a similar argument to that in part (i), it can be shown that

 $\angle BPY = \angle BCP = \angle CPR$ $\angle APD = 90^{\circ} \text{ (Angle in a semi-circle)}$ Similarly $\angle BPC = 90^{\circ}$ $\angle XPQ = \angle YPR \text{ (Vertically opposite } \angle s)$ $\therefore \angle APX + \angle APD + \angle DPQ = \angle BPY + \angle BPC + \angle CPR$ $\therefore 2.\angle APX + 90^{\circ} = 90^{\circ} + 2.\angle CPR$ $\therefore \angle APX = \angle CPR$

: *APC* is a straight line (equal vertically opposite $\angle s$)

 \therefore *A*, *P*, *C* are collinear.

Question 16 (a) (iii)

Criteria	Marks
Provides a correct solution	1

Sample answer:

From (i) and (ii) $\angle APX = \angle CPR$ implies that $\angle ADP = \angle BCP$ $\therefore A = B = C$ and D are concursion

 \therefore A, B, C and D are concyclic points (equal \angle s subtended at C and D by interval AB on the same side)

∴*ABCD* is a cyclic quadrilateral.

Question 16 (b) (i)

Criteria	Marks
Provides a correct solution	3
• Correctly sums and simplifies the middle term, or equivalent merit	2
Applies formula for geometric series, or equivalent merit	1

Sample answer:

$$\frac{1}{1+x^2} - \left(1 - x^2 + x^4 - x^6 + \dots + (-1)^{n-1} x^{2(n-1)}\right)$$

$$=\frac{1}{1+x^2} - \frac{1-(-x^2)^n}{1+x^2} = \frac{1-1+(-x^2)^n}{1+x^2}, \text{ using sum of geometric series.}$$

$$=\frac{\left(-x^2\right)^n}{1+x^2}$$

Since $1 + x^2 \ge 1$ for all $x, -x^{2n} \le \frac{(-x^2)^n}{1 + x^2} \le x^{2n}$

We have

$$-x^{2n} \le \frac{1}{1+x^2} - \left(1 - x^2 + x^4 \dots + (-1)^{n-1} x^{2(n-1)}\right) \le x^{2n}$$

Question 16 (b) (ii)

Criteria	Marks
Provides correct solution	2
• Integrates some terms in the inequality in (i), or equivalent merit	1

Sample answer:

Inequalities are preserved by integration:

$$\pm \int_{0}^{1} x^{2n} dx = \pm \frac{x^{2n+1}}{2n+1} \Big|_{0}^{1} = \pm \frac{1}{2n+1}$$

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = \tan^{-1} x \Big|_{0}^{1} = \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

$$\int_{0}^{1} 1 - x^{2} + x^{4} \dots + (-1)^{n-1} x^{2n-2} dx$$

$$= \left[x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} \right]_{0}^{1}$$

$$= 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + (-1)^{n-1} \frac{1}{2n-1}$$
so $-\frac{1}{2n+1} \le \frac{\pi}{4} - \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + (-1)^{n-1} \frac{1}{2n-1} \right) \le \frac{1}{2n+1}$

Question 16 (b) (iii)

Criteria	Marks
Provides a correct explanation	1

Sample answer:

Since
$$\lim_{x \to \infty} -\frac{1}{2n+1} = \lim_{x \to \infty} \frac{1}{2n+1} = 0$$
,

then as $n \to \infty$

$$\frac{\pi}{4} - \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + (-1)^{n-1} \frac{1}{2n-1}\right) \to 0$$

$$\therefore \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \dots$$

Question 16 (c)

Criteria	Marks
Provides a correct solution	3
Makes substantial progress	2
• Does substitution $u = 1 + \ln x$ or $u = \ln x$, or equivalent merit	1

$$I = \int \frac{\ln x}{\left(1 + \ln x\right)^2} dx$$

Put
$$t = \ln x$$
, then $\frac{dt}{dx} = \frac{1}{x} = \frac{1}{e^t}$

$$I = \int \frac{te^{t}}{(1+t)^{2}} dt$$
$$= \int \frac{(1+t)e^{t}}{(1+t)^{2}} dt - \int \frac{1}{(1+t)^{2}} dt$$
$$= \int \frac{1}{y} \frac{e^{t}}{1+t} dt - \left[\frac{1+e^{t}}{1+t} + \int \frac{e^{t}}{y} dt\right]^{-1} , \text{ by parts,}$$
$$= \frac{e^{t}}{1+t} + c$$
$$= \frac{x}{1+\ln x} + c$$

Mathematics Extension 2 2014 HSC Examination Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	7.6	E4
2	1	7.4	E4
3	1	3.1	E4
4	1	2.1, 2.4	E3
5	1	1.7	E6
6	1	5.1	E7
7	1	4.1	E8
8	1	2.3	E3
9	1	8	HE3, E9
10	1	8	E8, HE6

Section II

Question	Marks	Content	Syllabus outcomes
11 (a) (i)	2	2.2	E3
11 (a) (ii)	2	2.2	E3
11 (b)	3	4.1	E8
11 (c)	3	2.5	E3
11 (d)	2	1.1, 1.2	E6
11 (e)	3	5.1	E7
12 (a) (i)	2	1.3	E6
12 (a) (ii)	2	1.5	E6
12 (b) (i)	1	8.0	E2
12 (b) (ii)	2	8.0	E2
12 (c)	3	1.8	E4, E9
12 (d) (i)	1	4.1	E8
12 (d) (ii)	2	4.1	E8
12 (d) (iii)	2	4.1	E8
13 (a)	3	4.1	E8
13 (b)	4	5.1	E7
13 (c) (i)	1	3.2	E4
13 (c) (ii)	3	3.2	E4, E9
13 (c) (iii)	2	3.2	E4
13 (c) (iv)	2	3.2	E4

Question	Marks	Content	Syllabus outcomes
14 (a) (i)	2	7.2	E3
14 (a) (ii)	2	2.1,7.2	E3
14 (b) (i)	3	3.1	E3, E9
14 (b) (ii)	2	8.0	E2
14 (c) (i)	2	6.2.1	E5
14 (c) (ii)	4	6.2.1	E5
15 (a)	2	8.3	E2
15 (b) (i)	2	2.4, 8.0	E2, E3
15 (b) (ii)	3	2.4, 8.0	E2
15 (c) (i)	3	6.3.3	E5
15 (c) (ii)	2	8.3	E2
15 (c) (iii)	2	8.0	E2
15 (c) (iv)	1	6.3.3, 8.0	E5
16 (a) (i)	2	8.1	PE3, E2, E9
16 (a) (ii)	3	8.1	PE3, E2, E9
16 (a) (iii)	1	8.1	PE3, E2, E9
16 (b) (i)	3	8.3	E2
16 (b) (ii)	2	8.0	E2
16 (b) (iii)	1	8.0	E2
16 (c)	3	4.1	E8