

2014 HSC Mathematics General 2 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	В
3	С
4	В
5	В
6	D
7	D
8	А
9	С
10	А
11	А
12	С
13	В
14	В
15	В
16	D
17	В
18	А
19	А
20	В
21	С
22	В
23	С
24	D
25	Α

Section II

Question 26 (a)

Criteria	Marks
Provides correct answer	1

Sample answer:

 $4x(7x^4 - x^2)$ $= 28x^5 - 4x^3$

Question 26 (b)

	Criteria	Marks
•	Provides correct answer	2
•	Provides correct expression for h involving a correct trigonometric ratio	1

Sample answer:

$$\sin 28^\circ = \frac{5}{h}$$
$$h = \frac{5}{\sin 28^\circ}$$
$$= 10.650\ 27$$

= 10.65 (two decimal places)

Question 26 (c)

	Criteria	Marks
•	Provides correct solution	3
•	Demonstrates more than one correct algebraic step	2
•	Demonstrates a correct algebraic step	1

Sample answer:

$$\frac{5x+1}{3} - 4 = 5 - 7x$$
$$\frac{5x+1}{3} = 9 - 7x$$
$$5x + 1 = 3(9 - 7x)$$
$$5x + 1 = 27 - 21x$$
$$26x = 26$$
$$x = 1$$

Question 26 (d)

	Criteria	
•	Calculates correct values of x and y	3
•	Demonstrates correct method	2
•	Evaluates one value correctly from this method	2
•	Shows substitution or equivalent	1

$$y = 2x + 1$$

$$x - 2y - 4 = 0$$

$$x - 2(2x + 1) - 4 = 0$$

$$x - 4x - 2 - 4 = 0$$

$$-3x = 6$$

$$x = -2$$

$$y = 2(-2) + 1$$

$$y = -3$$

∴ $x = -2$, $y = -3$

Question 26 (e)

	Criteria	Marks
•	Draws horizontal and vertical lines on the graph to show correct position of median	2
•	Draws the correct ogive or equivalent merit	1

Sample answer:

Question 26 (f)

	Criteria	Marks
•	Provides correct solution	2
•	Attempts to set up a relevant equation or equivalent	1

$$W_{M} = kW_{E}$$

$$14 = k84$$

$$\frac{1}{6} = k$$

$$W_{M} = kW_{E}$$

$$2449 = \frac{1}{6}W_{E}$$

$$W_{E} = 14694 \text{ kg}$$

Question 26 (g)

	Criteria	Marks
•	Provides correct answer	2
•	Provides correct longitude difference	
O	OR	
•	Finds correct time from incorrect longitude calculation	

Sample answer:

Longitude difference = 47°

Time difference = 47×4

= 188 minutes

= 3 h 8 min

Question 27 (a) (i)

Criteria	Marks
Provides correct numerical expression	1
Trovides contect numerical expression	1

Sample answer:

Sale price = \$13380

= \$13 400 (to nearest \$100)

Stamp Duty = $\frac{13\,400}{100} \times 3$ = \$402

Question 27 (a) (ii)

	Criteria	
•	Provides correct monthly repayment	4
•	Makes significant progress towards correct answer eg total to be repaid	3
•	Makes significant progress towards total to be repaid	2
•	Makes some progress eg evidence of an interest calculation	1

Sample answer:

Car price = \$13 380 Transfer of rego = \$30 Stamp duty = \$402 Total to be borrowed = \$13 812 Interest = $7.5\% \times 13 812 \times 3$ = \$3107.70 Total to be repaid = \$13 812 + \$3107.70 = \$16 919.70 ÷ 36

= \$469.99

Question 27 (a) (iii)

	Criteria	Marks
•	Provides correct total amount or numerical expression	3
•	Makes progress towards total amount eg correct calculation of stamp duty or GST	2
•	Provides correct calculation of FSL	
0	OR	
•	Provides correct numerical expression for stamp duty or GST using an incorrect FSL	1

Sample answer:

Base rate = \$845 FSL = $1\% \times 845 FSL = \$8.45 Stamp Duty = $5.5\% \times (845 + 8.45)$ = \$46.94 GST = $10\% \times (845 + 8.45)$ = \$85.35 \therefore Total cost = 845 + 8.45 + 46.94 + 85.35= \$985.74

Question 27 (a) (iv)

	Criteria	Marks
•	Provides correct answer	1

Sample answer:

Comprehensive car insurance covers damage to Alex's car but non-compulsory third party only covers other people's property.

Question 27 (b)

	Criteria	Marks
•	Provides correct conclusion from correct calculations	2
•	Provides correct calculation for motorcycle trip	1

Sample answer:

Cost for 10 bus trips = \$36.40

: cost for 1 bus trip =
$$\frac{\$36.40}{10} = \$3.64$$

Cost for 1 motorcycle trip to travel 34 km

 $= 2 \times \$1.67$ = \\$3.34

- \$5.54

 \therefore the motorcycle is cheaper.

Question 27 (c)

	Criteria	Marks
•	Provides correct solution (ignore rounding) in litres	4
•	Makes progress towards calculation of volume	3
•	Makes progress towards calculation of base area	2
•	Provides evidence of radius and correct length of rectangle or equivalent merit	1

Sample answer:

Radius = $\frac{560}{2}$ mm = 0.28 m length of rectangle = (1400 - 2 × 280) mm = 840 mm = 0.84 m Total area = rectangle + circle Total area = (0.84 × 0.56 + π × 0.28²) m² = 0.7167 . . . m² \therefore Total area = 0.7167 . . . m² \therefore Volume = 0.7167 × 0.81

 $= 0.7167 \times 0.81$ = 0.580 527... m³ = 580.527... litres = 581 L

Question 28 (a)

	Criteria	Marks
•	Provides correct financial expectation or numerical expression	2
•	Makes some relevant progress	1

Sample answer:

$$\frac{1}{3} \times \$5 + 2 \times \frac{1}{3} \times \$0.5 - \$2 = 0$$

Financial expectation = 0

Question 28 (b) (i)

	Criteria	Marks
•	Provides correct solution	1

Sample answer:

(360 - 320) + 74 = 40 + 74= 114°

Question 28 (b) (ii)

	Criteria	Marks
•	Provides correct solution	2
•	Substitutes correctly into cosine rule	1

Sample answer:

 $AB^2 = 287^2 + 211^2 - 2 \times 287 \times 211 \times \cos 114^\circ$

= 176 151.5018

AB = 419.704

AB = 420 m

Question 28 (b) (iii)

	Criteria		
•	Provides correct solution in hectares to two significant figures	3	
•	Calculates correct area	2	
•	Makes some relevant progress eg correct substitution into appropriate formula; correct conversion into hectares; correct rounding to two significant figures	1	

Sample answer:

$$A = \frac{1}{2} \times 287 \times 211 \times \sin 114^{\circ}$$

- $= 27\ 660.78614\ m^2$
- = 2.766 ... ha
- = 2.8 hectares

Question 28 (c)

	Criteria	Marks
•	Provides correct numerical expression	2
•	Makes some relevant progress	1

Question 28 (d) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

1 cm = 6.25 m

Question 28 (d) (ii)

	Criteria	Marks
•	Provides correct answer using measured length	1

Sample answer:

 $5.1 \times 6.25 = 31.875$ m (Measurement between 5.0 and 5.2, ie length 31.25 m to 32.5 m)

Question 28 (d) (iii)

	Criteria		
•	Provides correct volume approximation or numerical expression	3	
•	Makes progress towards eg evidence of two applications of Simpson's Rule	2	
•	Makes some relevant progress eg correct value of h	1	

Sample answer:

$$A = \frac{12.5}{3} (21.88 + 4 \times 25.63 + 31.88) + \frac{12.5}{3} (31.88 + 4 \times 36.25 + 21.88)$$

= $\frac{12.5}{3} (156.28) + \frac{12.5}{3} (198.76)$
= $651.166\ 666\ 7 + 828.166\ 666\ 7$
 $V = 1479.33\ m^2 \times 1.2$
= $1775.2\ m^3$

OR Cross-sectional areas:

$$CD = 21.88 \times 1.2$$

= 26.256

$$EF = 25.63 \times 1.2$$

= 30.756

$$GH = 31.88 \times 1.2$$

= 38.256

$$IJ = 36.25 \times 1.2$$

= 43.5

$$KL = 21.88 \times 1.2$$

= 26.256

$$V = \frac{12.5}{3} (26.256 + 4 \times 30.756 + 38.256) + \frac{12.5}{3} (38.256 + 4 \times 43.5 + 26.256)$$

= 1775.2 m³

Question 29 (a) (i)

	Criteria	Marks
•	Provides the three correct values	1

Sample answer:

n	500	1000	1500
С	240	120	80

Question 29 (a) (ii)

	Criteria	Marks
•	Draws a smooth continuous curve using values in the table	2
•	Plots points from table	1

Question 29 (a) (iii)

	Criteria	Marks
•	Provides correct answer	1

Sample answer:

$$C = \frac{120\ 000}{n}$$

Question 29 (a) (iv)

Criteria	Marks
Provides a correct limitation	1

Sample answer:

Cost cannot be zero. OR Number of people cannot be zero. OR Number of people must be positive integer.

Question 29 (a) (v)

	Criteria	Marks
•	Provides correct conclusion with appropriate calculations	1

Sample answer:

$$94 = \frac{120\ 000}{n}$$

 $94n = 120\ 000$

$$n = 1276.59...$$

Cost cannot be \$94 because *n* must be an integer.

Question 29 (b)

	Criteria	Marks
•	Provides correct solution	3
•	Makes significant progress	2
•	Substitutes correctly in a BAC formula	1

Sample answer:

M = 84 N = ? H = 4

 \therefore 5 drinks is the maximum he can have.

Question 29 (c) (i)

	Criteria	Marks
•	Draws correct box-and-whisker plot	1

Sample answer:

Question 29 (c) (ii)

	Criteria	Marks
•	Provides correct answer	1

Sample answer:

50%

Question 29 (c) (iii)

Criteria		Marks
•	Supports a conclusion with valid justification with reference to summary statistics and skewness	4
•	Supports a conclusion by comparisons of location or spread AND reference to skewness	3
•	Provides two correct comparisons with numerical justification where appropriate	2
•	Provides one correct comparison	1

Sample answer:

Even though Terry has the highest mark of 76 overall, Kim's results seem better because:

- 75% of Kim's results are above 69 while only 50% of Terry's are above 69
- The range is smaller (75 67 = 8) compared to Terry's (76 67 = 9)
- The IRQ is also smaller (73 69 = 4) compared to Terry's (74 68 = 6)
- The median of 71 is higher than Terry's 69
- They are symmetrical while Terry's are positively skewed.

Question 30 (a)

	Criteria	Marks
•	Provides correct solution	3
•	Substitutes correct value for r or n into correct formula	2
•	Converts rate or time or equivalent	1

Sample answer:

$$PV = \frac{FV}{(1+r)^n}, \quad FV = 20\ 000, \quad r = 0.03 \div 12 = 0.0025, \quad n = 180$$
$$= \frac{20\ 000}{(1+0.0025)^{180}}$$
$$= 12\ 759.72643$$

: The amount they need to invest would be \$12 759.73

Question 30 (b) (i)

Criteria	Marks
Describes correct relationship	1

Sample answer:

The higher the percentage of GDP spent, the higher the life expectancy.

OR

Strong positive correlation because r is close to 1.

Question 30 (b) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

22.5 - 8.4 = 14.1

Question 30 (b) (iii)

	Criteria	Marks			
•	Provides correct conclusion from correct calculation	2			
•	Substitutes into an outlier formula				
0	OR				
•	Provides correct justification consistent with incorrect calculation				

Sample answer:

Yes, it is an outlier.

 $Q_U + 1.5 \times IQR = 22.5 + 1.5 \times 14.1$ = 43.65 Since 47.6 > 43.65

Question 30 (b) (iv)

	Criteria				
•	Provides correct answers	2			
•	Provides one correct answer	1			

Sample answer:

$$\bar{x} = 16.14$$

$$\sigma_x = 7.03$$

Question 30 (b) (v)

	Criteria	Marks
•	Substitutes correctly into both the gradient formula and the y-intercept formula	2
•	Substitutes correctly into the gradient formula or the y-intercept formula	1

Sample answer:

$$m = \frac{10.94}{7.03} \times 0.83$$

= 1.291 635 846
\approx 1.29
y-intercept = 70.73 - 1.29 \times 16.14
= 49.9094
\approx 49.9

: Equation of line of best fit is y = 1.29x + 49.9

Question 30 (b) (vi)

	Criteria			
•	Draws correct line	2		
•	Draws straight line through y-intercept of approximately 50	1		

Question 30 (b) (vii)

	Criteria	Marks
•	Provides correct answer	1

Sample answer:

74 years (from graph)

OR $y = 1.29 \times 18 + 49.9$ = 73.12 \therefore 73 years

Question 30 (b) (viii)

	Criteria	
•	Gives a correct reason	1

Sample answer:

The line is based on x-values from 5% to 30%, and 60% is beyond the bounds of the data points to which it was fitted. So, it is not valid to draw conclusions from it.

Mathematics General 2 2014 HSC Examination Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	FSCo1 Mobile phone plans	MGP-6, MGP-9
2	1	MM1 Units of measurement and applications	MGP-6
3	1	AM5 Modelling non-linear relationships	MG2H–3
4	1	FSHe2 Medication	MG2H–2, MG2H–5, MG–5, MG–10
5	1	FSCo2 Digital downloads and file storage	MGP-5, 9
6	1	PB1 Relative frequency and probability	MGP-8
7	1	AM2 Interpreting linear relationships	MGP–2
8	1	PB2 Multistage event and applications of probability DS4 Interpreting sets of data	MG2H–2, MG2H–8
9	1	FSDr2 Running costs and depreciation	MGP-6
10	1	MM4 Further applications of area and volume	MG2H–5
11	1	AM3 Further algebraic skills and techniques	MG2H-10
12	1	MM4 Further applications of area and volume	MG2H–4
13	1	FM1 Earning and managing money	MGP-6
14	1	DS4 Interpreting sets of data	MG2H–2
15	1	MM6 Spherical geometry	MG2H–4
16	1	FSRel Water availability and usage	MG2H–2
17	1	FSHe2 Medication	MG2H–2, MG2H–5
18	1	FSRe3 Energy and sustainability	MG2H–1, MG2H–5
19	1	PB2 Multistage events and applications of probability	MG2H–2, MG2H–8
20	1	FSRe3 Energy and cost	MG2H–1, MG2H–5
21	1	FM5 Annuities and loan repayments	MG2H–3, MG2H–6
22	1	FSDr2 Running costs and depreciation	MGP-6, MGP-9
23	1	MM5 Applications of trigonometry	MG2H–4, MG2H–5
24	1	DS5 The normal distribution	MG2H–7, MG2H–9
25	1	MM4 Further applications of area and volume	MG2H–4

Question	Marks	Content	Syllabus outcomes
26 (a)	1	AM3 Further algebraic skills and techniques	MG2H–3
26 (b)	2	MM5 Applications of trigonometry	MGH–4
26 (c)	3	AM3 Further algebraic skills and techniques	MG2H-10
26 (d)	3	AM3 Further algebraic skills and techniques	MG2H-10
26 (e)	2	DS4Interpreting sets of dataFSCo2Digital download and file storage	MGP-2
26 (f)	2	AM4 Modelling linear relationships	MGH–3
26 (g)	2	MM6 Spherical geometry	MG2H–4
27 (a) (i)	1	FSDr1 Cost of purchase and insurance	MGP–5
27 (a) (ii)	4	FM4 Credit and borrowing	MG2H–9
27 (a) (iii)	3	FSDr1 Cost of purchase and insurance	MGP6, MGP–8
27 (a) (iv)	1	FSDr1 Cost of purchase and insurance	MGP-10
27 (b)	2	FSDr2 Running costs and depreciation	MGP-1
27 (c)	4	FSRe1 Water availability and usage	MG2H-4
28 (a)	2	PB2 Multistage events and applications of probability	MG2H-8
28 (b) (i)	1	MM5 Applications of trigonometry	MG2H-4
28 (b) (ii)	2	MM5 Applications of trigonometry	MG2H–4
28 (b) (iii)	3	MM5 Applications of trigonometry	MG2H–5
28 (c)	2	PB2 Multistage events and applications of probability	MG2H-2
28 (d) (i)	1	FSRe2 Dams, land and catchment areas	MG2H-1/5
28 (d) (ii)	1	MM3 Similarity of two dimensional figures, right angled triangles	MGP4/5
28 (d) (iii)	3	FSRe2 Dams, land and catchment areas	MG2H–4
29 (a) (i)	1	AM5 Modelling non-linear relationships	MG2H-1, MG2H-3
29 (a) (ii)	2	AM5 Modelling non-linear relationships	MG2H–1, MG2H–3
29 (a) (iii)	1	AM5 Modelling non-linear relationships	MG2H-1
29 (a) (iv)	1	AM5 Modelling non-linear relationships	MG2H–3
29 (a) (v)	1	AM5 Modelling non-linear relationships	MG2H–4
29 (b)	3	FSDr3 Safety	MGP-1
29 (c) (i)	1	DS2 Displaying and interpreting single data sets	MGP-7
29 (c) (ii)	1	DS4 Interpreting sets of data	MG2H-1
29 (c) (iii)	4	DS4 Interpreting sets of data	MG2H-2 and 10

Section II

Question	Marks	Content	Syllabus outcomes
30 (a)	3	FM4 Credit and borrowing	MG2H–3
30 (b) (i)	1	FSHe3 Life expectancy	MG2H–2
30 (b) (ii)	1	DS4 Interpreting sets of data	MG2H–7
30 (b) (iii)	2	DS4 Interpreting sets of data	MG2H–9
30 (b) (iv)	2	DS3Summary statisticsDS3Summarise statistics	MGP-9
30 (b) (v)	2	FSHe1 Line of best fit	MG2H-1
30 (b) (vi)	2	FSHe1 Line of best fit FSHe3 Line of best fit	MG2H-7
30 (b) (vii)	1	FSHe3 Interpreting data	MG2H–1 and 2
30 (b) (viii)	1	FSHe3 Interpreting data	MG2H-1 and 3