Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks - 70
Section I Pages 2-5

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section
Section II Pages 6-13

60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 What is the remainder when $x^{3}-6 x$ is divided by $x+3$?
(A) $\quad-9$
(B) 9
(C) $x^{2}-2 x$
(D) $x^{2}-3 x+3$

2 Given that $N=100+80 e^{k t}$, which expression is equal to $\frac{d N}{d t}$?
(A) $k(100-N)$
(B) $k(180-N)$
(C) $k(N-100)$
(D) $k(N-180)$

3 Two secants from the point P intersect a circle as shown in the diagram.

NOT TO
SCALE

What is the value of x ?
(A) 2
(B) 5
(C) 7
(D) 8

4 A rowing team consists of 8 rowers and a coxswain.
The rowers are selected from 12 students in Year 10.
The coxswain is selected from 4 students in Year 9.
In how many ways could the team be selected?
(A) ${ }^{12} C_{8}+{ }^{4} C_{1}$
(B) ${ }^{12} P_{8}+{ }^{4} P_{1}$
(C) ${ }^{12} C_{8} \times{ }^{4} C_{1}$
(D) ${ }^{12} P_{8} \times{ }^{4} P_{1}$

5 What are the asymptotes of $y=\frac{3 x}{(x+1)(x+2)}$?
(A) $y=0, x=-1, x=-2$
(B) $y=0, x=1, x=2$
(C) $y=3, x=-1, x=-2$
(D) $y=3, x=1, x=2$

6 What is the domain of the function $f(x)=\sin ^{-1}(2 x)$?
(A) $-\pi \leq x \leq \pi$
(B) $-2 \leq x \leq 2$
(C) $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$
(D) $-\frac{1}{2} \leq x \leq \frac{1}{2}$

7 What is the value of k such that $\int_{0}^{k} \frac{1}{\sqrt{4-x^{2}}} d x=\frac{\pi}{3}$?
(A) 1
(B) $\sqrt{3}$
(C) 2
(D) $2 \sqrt{3}$

8 What is the value of $\lim _{x \rightarrow 3} \frac{\sin (x-3)}{(x-3)(x+2)}$?
(A) 0
(B) $\frac{1}{5}$
(C) 5
(D) Undefined

9 Two particles oscillate horizontally. The displacement of the first is given by $x=3 \sin 4 t$ and the displacement of the second is given by $x=a \sin n t$. In one oscillation, the second particle covers twice the distance of the first particle, but in half the time.

What are the values of a and n ?
(A) $a=1.5, n=2$
(B) $a=1.5, n=8$
(C) $a=6, \quad n=2$
(D) $a=6, \quad n=8$

10 The graph of the function $y=\cos \left(2 t-\frac{\pi}{3}\right)$ is shown below.

What are the coordinates of the point P ?
(A) $\left(\frac{5 \pi}{12}, 0\right)$
(B) $\left(\frac{2 \pi}{3}, 0\right)$
(C) $\left(\frac{11 \pi}{12}, 0\right)$
(D) $\left(\frac{7 \pi}{6}, 0\right)$

Section II

60 marks

Attempt Questions 11-14
Allow about $\mathbf{1}$ hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int \sin ^{2} x d x$.
(b) Calculate the size of the acute angle between the lines $y=2 x+5$ and $y=4-3 x$.
(c) Solve the inequality $\frac{4}{x+3} \geq 1$.
(d) Express $5 \cos x-12 \sin x$ in the form $A \cos (x+\alpha)$, where $0 \leq \alpha \leq \frac{\pi}{2}$.
(e) Use the substitution $u=2 x-1$ to evaluate $\int_{1}^{2} \frac{x}{(2 x-1)^{2}} d x$.
(f) Consider the polynomials $P(x)=x^{3}-k x^{2}+5 x+12$ and $A(x)=x-3$.
(i) Given that $P(x)$ is divisible by $A(x)$, show that $k=6$.
(ii) Find all the zeros of $P(x)$ when $k=6$.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) In the diagram, the points A, B, C and D are on the circumference of a circle, whose centre O lies on $B D$. The chord $A C$ intersects the diameter $B D$ at Y. The tangent at D passes through the point X.

It is given that $\angle C Y B=100^{\circ}$ and $\angle D C Y=30^{\circ}$.

Copy or trace the diagram into your writing booklet.
(i) What is the size of $\angle A C B$?
(ii) What is the size of $\angle A D X$?
(iii) Find, giving reasons, the size of $\angle C A B$.
(b) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.

The equation of the chord $P Q$ is given by $(p+q) x-2 y-2 a p q=0$. (Do NOT prove this.)
(i) Show that if $P Q$ is a focal chord then $p q=-1$.
(ii) If $P Q$ is a focal chord and P has coordinates $(8 a, 16 a)$, what are the coordinates of Q in terms of a ?
(c) A person walks 2000 metres due north along a road from point A to point B. The point A is due east of a mountain $O M$, where M is the top of the mountain. The point O is directly below point M and is on the same horizontal plane as the road. The height of the mountain above point O is h metres.

From point A, the angle of elevation to the top of the mountain is 15°.
From point B, the angle of elevation to the top of the mountain is 13°.

NOT TO
SCALE
(i) Show that $O A=h \cot 15^{\circ}$.
(ii) Hence, find the value of h.
(d) A kitchen bench is in the shape of a segment of a circle. The segment is bounded by an arc of length 200 cm and a chord of length 160 cm . The radius of the circle is $r \mathrm{~cm}$ and the chord subtends an angle θ at the centre O of the circle.

NOT TO
SCALE
(i) Show that $160^{2}=2 r^{2}(1-\cos \theta)$.
(ii) Hence, or otherwise, show that $8 \theta^{2}+25 \cos \theta-25=0$.
(iii) Taking $\theta_{1}=\pi$ as a first approximation to the value of θ, use one application of Newton's method to find a second approximation to the value of θ. Give your answer correct to two decimal places.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) A particle is moving along the x-axis in simple harmonic motion. The displacement of the particle is x metres and its velocity is $v \mathrm{~m} \mathrm{~s}^{-1}$. The parabola below shows v^{2} as a function of x.

(i) For what value(s) of x is the particle at rest? $\quad \mathbf{1}$
(ii) What is the maximum speed of the particle? 1
(iii) The velocity v of the particle is given by the equation

$$
v^{2}=n^{2}\left(a^{2}-(x-c)^{2}\right)
$$

where a, c and n are positive constants.
What are the values of a, c and n ?

Question 13 continues on page 11

Question 13 (continued)
(b) Consider the binomial expansion

$$
\left(2 x+\frac{1}{3 x}\right)^{18}=a_{0} x^{18}+a_{1} x^{16}+a_{2} x^{14}+\cdots
$$

where $a_{0}, a_{1}, a_{2}, \ldots$ are constants.
(i) Find an expression for a_{2}.
(c) Prove by mathematical induction that for all integers $n \geq 1$,

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}
$$

(d) Let $f(x)=\cos ^{-1}(x)+\cos ^{-1}(-x)$, where $-1 \leq x \leq 1$.
(i) By considering the derivative of $f(x)$, prove that $f(x)$ is constant.
(ii) Hence deduce that $\cos ^{-1}(-x)=\pi-\cos ^{-1}(x)$.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) A projectile is fired from the origin O with initial velocity $V \mathrm{~m} \mathrm{~s}^{-1}$ at an angle θ to the horizontal. The equations of motion are given by

$$
x=V t \cos \theta, \quad y=V t \sin \theta-\frac{1}{2} g t^{2} . \quad \text { (Do NOT prove this.) }
$$

(i) Show that the horizontal range of the projectile is $\frac{V^{2} \sin 2 \theta}{g}$.

2

A particular projectile is fired so that $\theta=\frac{\pi}{3}$.
(ii) Find the angle that this projectile makes with the horizontal when

$$
t=\frac{2 V}{\sqrt{3} g} .
$$

(iii) State whether this projectile is travelling upwards or downwards when

Question 14 continues on page 13

(b) A particle is moving horizontally. Initially the particle is at the origin O moving with velocity $1 \mathrm{~m} \mathrm{~s}^{-1}$.

The acceleration of the particle is given by $\ddot{x}=x-1$, where x is its displacement at time t.
(i) Show that the velocity of the particle is given by $\dot{x}=1-x$.
(ii) Find an expression for x as a function of t.
(iii) Find the limiting position of the particle.
(c) Two players A and B play a series of games against each other to get a prize. In any game, either of the players is equally likely to win.

To begin with, the first player who wins a total of 5 games gets the prize.
(i) Explain why the probability of player A getting the prize in exactly

7 games is $\binom{6}{4}\left(\frac{1}{2}\right)^{7}$.
(ii) Write an expression for the probability of player A getting the prize in at most 7 games.
(iii) Suppose now that the prize is given to the first player to win a total of $(n+1)$ games, where n is a positive integer.

By considering the probability that A gets the prize, prove that

$$
\binom{n}{n} 2^{n}+\binom{n+1}{n} 2^{n-1}+\binom{n+2}{n} 2^{n-2}+\cdots+\binom{2 n}{n}=2^{2 n}
$$

End of paper

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

