

2015 HSC Software Design and Development
Marking Guidelines

Section I

Multiple-choice Answer Key

Question Answer

1 C

2 A

3 B

4 D

5 B

6 C

7 B

8 C

9 C

10 A

11 B

12 D

13 A

14 A

15 C

16 D

17 B

18 D

19 B

20 D

– 1 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Section II

Question 21

Criteria Marks

• Outlines two relevant reasons 2

• Provides one relevant reason 1

Sample answer:

• Correct previously undetected errors

• Implement new requirements due to changes in the client’s circumstances

Question 22

Criteria Marks

• Clearly describes method(s) for testing a completed program before its
release

4

• Outlines how a completed program can be tested 3

• Outlines a way in which software can be tested 2

• Identifies a feature of software testing 1

Sample answer:

Test in the user’s computing environment, in the form of a beta testing involving a significant
number of testers. This could ensure that the program is tested with real live data that is
unavailable in the developer’s environment.

Load testing could also be used, where multiple users access the program at once to see if the
program can handle the amount of requests from each user.

– 2 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 23 (a)

 Criteria Marks

 • Provides a comprehensive list of the information required 3

 • Lists some information required 2

 • Identifies a feature of library routines or documentation 1

Sample answer:

The programmer will need to know what the routine achieves and how it is to be called – this
includes its name, and the number, type, order and purpose of parameters passed to it and
returned from it.

Question 23 (b)

 Criteria Marks

 • Provides a substantially correct algorithm that achieves the purpose 4

 • Demonstrates some understanding of the use of CharTally AND at least one
of arrays, looping or accumulation 3

 • Provides some features of the algorithm 2

 • Demonstrates some understanding of the problem 1

Sample answer:

BEGIN FindLetter
total = 0
FOR loop = 1 TO 20

 CharTally(Students(loop), “ f ”, num)
total = total + num

 NEXT loop
 display total
END

Question 24

Criteria Marks

• Clearly indicates how the effects of runtime and logic errors are different,
and provides an example of each type of error 3

• Shows some understanding of runtime and/or logic errors 2

• Identifies a feature of runtime or logic errors 1

Sample answer:

Runtime errors (such as division by zero) cause a software application to terminate
unexpectedly. A logic error (such as an incorrect formula) will not crash the software, but will
produce incorrect output.

– 3 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 25

Criteria Marks

• Clearly explains why free updates are provided 3

• Outlines reason(s) for updates 2

• Identifies a reason for updates 1

Sample answer:

Software developers may provide free updates in order to gain customer loyalty and acquire a
larger market share. Also, updates are a way of overcoming identified weaknesses in their
software so as not to harm their reputation. This service may also be expected by their
customers.

Question 26

Criteria Marks

• Provides an algorithm that correctly addresses both issues 4

• Demonstrates some understanding of how to use a flag and/or a counter
and/or a loop and/or a selection and/or features of equivalent merit to
address the issue(s)

2–3

• Demonstrates a basic understanding of how one of the issues can be
addressed 1

Sample answer:

BEGIN
 Get MemberID

Found = False
Counter = 0
WHILE Found = False AND Counter < 200

Counter = Counter + 1
IF MemberID = Members(Counter).ID THEN

 Found = True
 END IF

 ENDWHILE

IF Found THEN

 Display Members(Counter).Name

ELSE
 Display “InvalidID”
 ENDIF
END

– 4 –

http:Members(Counter).ID

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 27

Criteria Marks

• Outlines effects on software development 3

• Identifies effects on software development

OR

• Outlines an effect on software development

2

• Identifies one effect on software development 1

Sample answer:

Developers are forced to consider how their interfaces will function on a variety of screen
sizes. They will also need to allow for a range of internet connection speeds for the mobile
devices. The variety of devices also forces developers to consider the different operating
systems they may have to accommodate.

Question 28 (a)

 Criteria Marks

 • Provides strengths and/or weaknesses of both development approaches in
relation to the system

4

 • Provides strengths and/or weaknesses of both development approaches

OR

 • Provides strengths and/or weaknesses of one of the development
approaches in relation to the system

3

 • Identifies features of prototyping and/or rapid application development 2

 • Identifies a feature of prototyping or rapid application development 1

Sample answer:

Prototyping is applicable to the USB Kiosk project because it will involve prospective users
providing feedback on early working models, particularly with respect to the interface. This
has the advantage of ensuring that the final interface design is more likely to meet user needs.

RAD is applicable for the project as many of the processes involved such as credit card
transactions, will already exist in similar products and may have been well tested. The reuse
of the code will reduce the amount of time needed to be spent on coding and testing.

– 5 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 28 (b)

 Criteria Marks

 • Provides a substantially correct storyboard 3

 • Provides a storyboard that incorporates some features of the interface 2

 • Identifies some features of storyboarding 1

Sample answer:

Question 29 (a)

Criteria Marks

• Shows a good understanding of the purpose 2

• Shows some understanding of the purpose 1

Sample answer:

The Main module enables the user to see and make choices from the menu and then to access
the veg & meat modules repeatedly until deciding to ‘finish’, whereupon the total is displayed.

– 6 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 29 (b)

 Criteria Marks

 • Provides an explanation of the purpose of the stubs in developing the 3 program

 • Outlines a function of the stubs

OR 2

 • Identifies some functions of the stubs

 • Shows some understanding of the problem 1

Sample answer:

Stubs provide a way of testing the operation or navigation of a solution without having to
fully develop modules. In this algorithm the stub modules enable the testing of the logic in the
main module using output statements. Stubs also enable checking of parameter passing. In
this algorithm the stubs provide values for passed parameters such as VegPrice & MeatPrice and
Total.

Question 29 (c)

 Criteria Marks

 • Provides a substantially correct structure chart 4

 • Provides a structure chart that addresses the main parts of the algorithm
using substantially correct symbols 3

 • Provides a diagram that addresses part of the problem using some correct
structure chart symbols 2

 • Identifies a feature of structure charts

OR 1

 • Shows some understanding of the problem

Sample answer:

– 7 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 30 (a)

 Criteria Marks

 • Provides a reason for using arrays of records in the scenario 2

 • Identifies a feature of arrays of records 1

Sample answer:

The fields store different types of data about the cars. Each car is stored in a different record
(hence array of records). Records are required for the cars because the fields have different
data types, for example string for Model and Integer for year of manufacture.

Question 30 (b)

 Criteria Marks

 • Provides argument(s) for and/or against sorting the data 3

 • Identifies points for and/or against sorting the data

OR 2

 • Outlines a point for or against sorting the data

 • Identifies a point for or against sorting the data 1

Sample answer:

Even though searching can be more efficient using a binary search on sorted data, searches in
this database will often be on combinations of fields, so sorting on one of them will not speed
up the process or provide any benefits. If we were to sort this array of records we would only
be able to sort one field. Which one field would be most appropriate? There are none that are
more relevant than the others.

Question 31 (a)

 Criteria Marks

 • Provides a substantially correct deskcheck 3

 • Provides a partially correct deskcheck 2

 • Identifies a feature of the deskcheck process 1

Sample answer:
Deskcheck

SerialNumber Counter Valid Display

#1k3# FALSE

2 TRUE

3 FALSE

4 TRUE

5 FALSE FALSE

– 8 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 31 (b)

 Criteria Marks

 • Modifies the algorithm so that it is substantially correct 3

 • Makes at least one relevant change to the algorithm 2

 • Identifies an error in this algorithm 1

Sample answer:

BEGIN

Input SerialNumber and store in Serial()

Valid = True

IF (Length of SerialNumber is 5) AND (Serial(1) is “#”) AND (Serial(5) is “#”) THEN

FOR Counter = 2 to 4

IF Serial(Counter) is NOT a digit THEN

 Valid = False

 ENDIF

 NEXT Counter

ELSE

 Valid = False

 ENDIF

 Display Valid

END

Alternate answer:

BEGIN

Input SerialNumber and store in Serial()

Valid = True

IF (Length of SerialNumber is 5) AND (Serial(1) is “#”)

Counter = 2

WHILE Counter <= 4 AND Valid = True

IF Serial(Counter) is NOT a digit THEN

 Valid = False

 ENDIF

Counter = Counter + 1

 END WHILE

ELSE

 Valid = False

 ENDIF

IF (Serial(5) is not “#”) THEN

Valid = False

END IF

Display Valid

END

– 9 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 31 (c)

 Criteria Marks

 • Provides a list of test data that can be used to identify the different
possible errors 3

 • Includes justification for each item

 • Provides some relevant test data with some justification 2

 • Identifies a feature of test data 1

Sample answer:

Item Test the case where:
#1234# the string is too long

@123# the 1st character is not #

#123@ the 5th character is not #

#a23# a character is not a digit
#12# the string is too short

– 10 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 32

Criteria Marks

• Provides a substantially correct algorithm that uses appropriate control and
data structures 4

• Provides an algorithm that addresses some aspects of the problem using
appropriate control and data structures 3

• Provides an algorithm that shows some understanding of data structures
AND/OR control structures 2

• Shows some understanding of the problem 1

Sample answer:

1 BEGIN DealCards

2 FOR A = 0 TO 6

3 Player1(A + 1) = Cards(A * 4 + 1)

4 Player2(A + 1) = Cards(A * 4 + 2)

5 Player3(A + 1) = Cards(A * 4 + 3)

6 Player4(A + 1) = Cards(A * 4 + 4)

7 NEXT A

8 END

– 11 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Section III

Question 33 (a)

Criteria Marks

• Provides points for and/or against the use of the paradigms in the scenario 4

• Provides points for and/or against the paradigms

OR

• Provides points for and/or against ONE paradigm with reference to the
scenario

3

• Identifies features or reasons for the suitability of the object oriented
and/or logic paradigms

OR

• Shows some understanding of ONE paradigm with reference to the
scenario

2

• Identifies a feature or suitability of the object oriented paradigm OR the
logic paradigm

1

Sample answer:

The logic paradigm provides facts and rules where the developer is not required to design
how they are met. Facts would be suitable in this scenario for stating the prerequisite
conditions for the activities and the student’s interests, whilst rules could be used to determine
whether students have met the prerequisites and suggest further activities.

Object oriented would be appropriate for developing the user interface and the actual
activities themselves. The types (or genres) of activities could be set as classes and the
different levels of activities within these classes could be developed as subclasses which
would then make use of inheritance and polymorphism to make coding faster through
reusability of code.

Question 33 (b)

 Criteria Marks

 • Outlines when heuristics are appropriate AND provides a relevant
example 2

 • Identifies a feature of heuristics 1

Sample answer:

Heuristics are criteria or principles for deciding which, among several alternative courses of
action, promises to be the most effective in order to achieve some goal.

Heuristics are also called “rules of thumb” which employ fuzzy logic to determine the optimal
path to take in order to reach a resolution. This is particularly useful when the algorithm to
determine the results is not known and requires the use of probability.

Virus scanning software often use heuristics for detecting viruses and other types of malware.
As many new viruses are unknown, heuristic scanning is used to look for tell−tale signs of
viruses.

– 12 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 33 (c) (i)

 Criteria Marks

 • Correctly extends the code 2

 • Shows an understanding of logic paradigm facts 1

Sample answer:

salary(ling, 50001).

employer(ling, kim).

Question 33 (c) (ii)

 Criteria Marks

 • Shows correct result with valid reasoning 2

 • Provides some relevant information 1

Sample answer:

An employee is considered valuable if they have an employer and also earn a salary over

$50000. Hence the statement valuable_employee (E) will evaluate to “al” and “kim”.

It evaluates to “al” because he is employed by “jay” and has a salary of $51000.

It evaluates to “kim” because she is employed by “jay” and has a salary of $56000.

If the facts from the above question were included then “ling” would also be evaluated as a

valuable employee.

– 13 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 33 (d) (i)

 Criteria Marks

 • Correctly explains how polymorphism and inheritance can be used for this
scenario 4

 •
OR

Outlines how polymorphism OR inheritance can be used

3

 • Outlines features of both concepts

 • Identifies features of polymorphism and/or inheritance 2

 • Provides some relevant information 1

Sample answer:

Inheritance is the ability of objects to take on the characteristics (methods and attributes) of
their parent class or classes. This encourages modularity and robust code.

Polymorphism is the ability of methods to appear in many forms. In object oriented
programming, this means at runtime a method can process data differently depending on the
circumstances. The same command can process objects differently depending on their data
type, class or number of parameters.

This means that inheritance and polymorphism both relate to classes and their subclasses. In
this scenario a subclass such as the following could be added.

class SpecialisedComponent {

 is a Component

}

Inheritance would then be able to be used in this software, as this subclass would have each
attribute and method of the parent class, Component.

Polymorphism can also be used in the development of this software as some methods in the
SpecialisedComponent class would have the same name as the corresponding method in the
superclass but would be calculated differently.

– 14 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 33 (d) (ii)

 Criteria Marks

 • Provides a substantially correct method 3

 • Identifies some features of the cost() method 2

 • Identifies a feature of the cost() method 1

Sample answer:

class Engine {

 is a Component

 public –

cost():

FOR i = 1 TO number of components

 IF components[i].type() = “standard engine” THEN

 components[i].cost() = 2000

 END IF

 NEXT i

 }

class V8Engine {

 is a Engine

public –

cost():

FOR i = 1 TO number of components

IF components[i].type() = “V8 engine” THEN

 components[i].cost() = 2800

 END IF

 NEXT i

}

– 15 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 33 (e)

 Criteria Marks

 • Explains the consequences of the error AND shows how to correct the
error 3

 • Outlines consequence(s) AND/OR outlines how to correct the error 2

 • Identifies the error or a consequence 1

Sample answer:

Encapsulation is the process of including all the attributes and procedures that an object needs
within the object itself. It involves hiding an object’s data and processes from its environment
meaning that only the object can alter its own data.

In this section of code the sort() and swap() methods are in the public section of the SortedArray
class, which allows them to be accessed by modules from outside of the class. This
compromises the encapsulation of the methods as it means that there is no longer a guarantee
that the array will always be in sorted order.

This error can be fixed by moving these two methods into the private section of the method.

Question 34 (a)

 Criteria Marks

 • Provides correct working 2

 • Identifies a feature of binary multiplication 1

Sample answer:

Question 34 (b)

 Criteria Marks

 • Outlines relevant benefit(s) 2

 • Identifies a feature of 2’s complement 1

Sample answer:

The 2’s complement representation allows the largest possible range of both negative and
positive integers as well as enabling their subtraction by adding complements (negatives).

– 16 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 34 (c) (i)

 Criteria Marks

 • Correctly describes what is achieved 3

 • Shows some understanding of hexadecimal to binary conversion and
provides some interpretation of the data stream 2

 • Provides some relevant information 1

Sample answer:

The tool moves to X = 45, Y = 16 without cutting.

Working:

D

1101

11 0

START TOOL

6

0110

10 1101

X = 45

A

1010

010000

Y = 16

0

0000

0

STOP

Question 34 (c) (ii)

 Criteria Marks

 • Provides a substantially correct data stream 3

 • Provides a partially correct data stream

OR 2

 • Shows some understanding of how to work out the data stream

 • Shows an understanding of the problem 1

Sample answer:

1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0

1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0

1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0

– 17 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 34 (d)

 Criteria Marks

 • Identifies all THREE components and outlines how to represent –7.5 in
floating point notation 4

 • Identifies at least TWO components and shows some steps for how to
represent –7.5 in floating point notation 3

 • Identifies at least ONE component and shows some understanding of how
to represent a decimal fraction in floating point notation

OR 2

 • Identifies all THREE components

 • Identifies a feature of floating point notation 1

Sample answer:

The three components are sign bit, exponent and mantissa.

The sign bit is 1 because –7.5 is negative.

111.1 = 1.111 × 22

So the exponent is the binary equivalence of 127 + 2 (the index).

The mantissa is the three ones after the point followed by 20 zeros to fill the 23 bits.

Question 34 (e) (i)

 Criteria Marks

 • Draws a substantially correct truth table 3

 • Draws a partially correct truth table 2

 • Shows some understanding of the problem 1

Sample answer:

Key Door Lights Alarm

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

– 18 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Question 34 (e) (ii)

 Criteria Marks

 • Draws a correct circuit 3

 • Solves part of the problem 2

 • Shows some understanding of the problem 1

Sample answer:

– 19 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

2015 HSC Software Design and Development
Mapping Grid

Section I

Question Marks Content Syllabus outcomes

1 1 9.2.1 Needs of client H4.1, H6.1

2 1 9.2.2 Screen elements H6.4

3 1 9.2.1 Documentation H5.2

4 1 9.1.1 Intellectual property H3.1

5 1 9.2.5 Maintenance / documentation H5.2, H6.1

6 1 9.2.2 Pseudocode output H4.3

7 1 9.1.1 Inclusivity H3.2, H6.4

8 1 9.1.2 Implementation methods H6.3

9 1 9.2.2 Data types / purpose H1.2

10 1 9.3 Project management H6.2

11 1 9.2.2 Flowchart control structures H5.1

12 1 9.2.2 Flowchart output H4.3

13 1 9.2.3 Fetch/execute cycle H1.1

14 1 9.2.3 Metalanguages H2.1

15 1 9.1.1 Reverse engineering H3.1

16 1 9.2.2 Completing an algorithm H5.3

17 1 9.2.2 Sort types H1.2

18 1 9.2.2 Replacing a WHILE loop H4.2

19 1 9.2.2 Data types in an array H1.3

20 1 9.2.4 Driver to test module H5.3

– 20 –

BOSTES 2015 HSC Software Design and Development Marking Guidelines

Section II

Question Marks Content Syllabus outcomes

21 2 9.2.5 Reasons for maintenance H5.1

22 4 9.2.4 Describe the types of testing H4.2

23 (a) 3 9.2.2 Documentation for library routine H4.2

23 (b) 4 9.2.2 Use documented subroutines in an algorithm. H6.1

24 3 9.2.3 Runtime errors H1.1

25 3 9.1.1 S/W market H3.1

26 4 9.2.2 Linear search for a unique element H4.2

27 3 9.1.2 Trends in software development H2.2

28 (a) 4 9.1.2 Development Approaches H1.2

28 (b) 3 9.2.1 System modelling tool H6.4

29 (a) 2 9.2.2 Algorithm module interpretation H4.1

29 (b) 3 9.2.3 Use of stubs H5.3

29 (c) 4 9.2.1 Structure Chart H6.3

30 (a) 2 9.2.1 Array of records H4.2

30 (b) 3 9.2.2 Planning and designing a solution (sorting) H4.2, H4.3

31 (a) 3 9.2.2 Desk checking H4.2

31 (b) 3 9.2.2 Error correction H4.2

31 (c) 3 9.2.2 Test data H4.2

32 4 9.2.3 Algorithm design H4.2

Section III

Question Marks Content Syllabus outcomes

33 (a) 4 9.4.1 Justify paradigms H1.2, H2.1, H4.1

33 (b) 2 9.4.1 Heuristics H1.2, H4.1

33 (c) (i) 2 9.4.1 Modify logic fragment H1.2, H4.2

33 (c) (ii) 2 9.4.1 Interpret logic code H1.2, H4.2

33 (d) (i) 4 9.4.1 Polymorphism and inheritance H1.2, H4.2

33 (d) (ii) 3 9.4.1 Modify OOP fragment H1.2, H4.2

33 (e) 3 9.4.1 Encapsulation H4.2

34 (a) 2 9.4.2 Binary arithmetic H1.3

34 (b) 2 9.4.2 2’s complement H1.3

34 (c) (i) 3 9.4.2 Interpretation of data stream H1.1

34 (c) (ii) 3 9.4.2 Generate data stream H1.1

34 (d) 4 9.4.2 Floating point representation H1.3

34 (e) (i) 3 9.4.2 Truth table H1.1

34 (e) (ii) 3 9.4.2 Circuit design H1.1

– 21 –

	2015 HSC Software Design and Development Marking Guidelines
	Section I
	Section II
	Section III

	2015 HSC Software Design and Development Mapping Grid

