

BOARD OF STUDIES

# 2007

HIGHER SCHOOL CERTIFICATE EXAMINATION

# Mathematics Extension 1

#### **General Instructions**

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

### Total marks – 84

- Attempt Questions 1–7
- All questions are of equal value

## Total marks – 84 Attempt Questions 1–7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

| Question 1 (12 marks) Use a SEPARATE writing booklet. |                                                                                                                                                                                                                           |   |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (a)                                                   | Write $(1+\sqrt{5})^3$ in the form $a+b\sqrt{5}$ , where <i>a</i> and <i>b</i> are integers.                                                                                                                              | 2 |
| (b)                                                   | The interval <i>AB</i> , where <i>A</i> is (4, 5) and <i>B</i> is (19, $-5$ ), is divided internally in the ratio 2 : 3 by the point <i>P</i> ( <i>x</i> , <i>y</i> ). Find the values of <i>x</i> and <i>y</i> .         | 2 |
| (c)                                                   | Differentiate $\tan^{-1}(x^4)$ with respect to <i>x</i> .                                                                                                                                                                 | 2 |
| (d)                                                   | The graphs of the line $x - 2y + 3 = 0$ and the curve $y = x^3 + 1$ intersect at (1, 2). Find the exact value, in radians, of the acute angle between the line and the tangent to the curve at the point of intersection. | 3 |

(e) Use the substitution 
$$u = 25 - x^2$$
 to evaluate  $\int_3^4 \frac{2x}{\sqrt{25 - x^2}} dx$ . 3

Question 2 (12 marks) Use a SEPARATE writing booklet.

- (a) By using the substitution  $t = \tan \frac{\theta}{2}$ , or otherwise, show that  $\frac{1 \cos \theta}{\sin \theta} = \tan \frac{\theta}{2}$ . 2
- (b) Let  $f(x) = 2\cos^{-1} x$ .
  - (i) Sketch the graph of y = f(x), indicating clearly the coordinates of the endpoints of the graph. 2
  - (ii) State the range of f(x). 1
- (c) The polynomial  $P(x) = x^2 + ax + b$  has a zero at x = 2. When P(x) is divided **3** by x + 1, the remainder is 18.

Find the values of *a* and *b*.

- (d) A skydiver jumps from a hot air balloon which is 2000 metres above the ground. The velocity, v metres per second, at which she is falling t seconds after jumping is given by  $v = 50(1 - e^{-0.2t})$ .
  - (i) Find her acceleration ten seconds after she jumps. Give your answer 2 correct to one decimal place.
  - (ii) Find the distance that she has fallen in the first ten seconds. Give your answer correct to the nearest metre.

#### Question 3 (12 marks) Use a SEPARATE writing booklet.

(a) Find the volume of the solid of revolution formed when the region bounded **3** by the curve  $y = \frac{1}{\sqrt{9 + x^2}}$ , the *x*-axis, the *y*-axis and the line x = 3, is rotated about the *x*-axis.

(b) (i) Find the vertical and horizontal asymptotes of the hyperbola  $y = \frac{x-2}{x-4}$  3 and hence sketch the graph of  $y = \frac{x-2}{x-4}$ .

(ii) Hence, or otherwise, find the values of x for which  $\frac{x-2}{x-4} \le 3$ . 2

(c) A particle is moving in a straight line with its acceleration as a function of x given by  $\ddot{x} = -e^{-2x}$ . It is initially at the origin and is travelling with a velocity of 1 metre per second.

(i) Show that 
$$\dot{x} = e^{-x}$$
.

(ii) Hence show that  $x = \log_e(t+1)$ .

2

Marks

Question 4 (12 marks) Use a SEPARATE writing booklet.

- (a) In a large city, 10% of the population has green eyes.
  - (i) What is the probability that two randomly chosen people both have **1** green eyes?
  - (ii) What is the probability that exactly two of a group of 20 randomly 1 chosen people have green eyes? Give your answer correct to three decimal places.
  - (iii) What is the probability that more than two of a group of 20 randomly chosen people have green eyes? Give your answer correct to two decimal places.
- (b) Use mathematical induction to prove that  $7^{2n-1} + 5$  is divisible by 12, for all **3** integers  $n \ge 1$ .



The diagram shows points A, B, C and D on a circle. The lines AC and BD are perpendicular and intersect at X. The perpendicular to AD through X meets AD at P and BC at Q.

Copy or trace this diagram into your writing booklet.

(i) Prove that  $\angle QXB = \angle QBX.$ 3(ii) Prove that Q bisects BC.2

3

Question 5 (12 marks) Use a SEPARATE writing booklet.

(a)



The points P and Q lie on the circle with centre O and radius r. The arc PQ subtends an angle  $\theta$  at O. The tangent at P and the line OQ intersect at T, as shown in the diagram.

(i) The arc *PQ* divides triangle *TPO* into two regions of equal area. 2

Show that  $\tan \theta = 2\theta$ .

- (ii) A first approximation to the solution of the equation  $2\theta \tan \theta = 0$  is  $\theta = 1.15$  radians. Use one application of Newton's method to find a better approximation. Give your answer correct to four decimal places.
- (b) Mr and Mrs Roberts and their four children go to the theatre. They are randomly 2 allocated six adjacent seats in a single row.

What is the probability that the four children are allocated seats next to each other?

(c) Find the exact values of x and y which satisfy the simultaneous equations

$$\sin^{-1}x + \frac{1}{2}\cos^{-1}y = \frac{\pi}{3}$$
 and

$$3\sin^{-1}x - \frac{1}{2}\cos^{-1}y = \frac{2\pi}{3}.$$

**Question 5 continues on page 7** 



The diagram shows a point  $P(2ap, ap^2)$  on the parabola  $x^2 = 4ay$ . The normal to the parabola at *P* intersects the parabola again at  $Q(2aq, aq^2)$ .

The equation of PQ is  $x + py - 2ap - ap^3 = 0$ . (Do NOT prove this.)

(i) Prove that 
$$p^2 + pq + 2 = 0$$
. 1

(ii) If the chords *OP* and *OQ* are perpendicular, show that  $p^2 = 2$ . **2** 

# **End of Question 5**

BLANK PAGE

**Question 6** (12 marks) Use a SEPARATE writing booklet.

(a) A particle moves in a straight line. Its displacement, x metres, after t seconds is given by

$$x = \sqrt{3}\sin 2t - \cos 2t + 3.$$

- (i) Prove that the particle is moving in simple harmonic motion about x = 3 by showing that  $\ddot{x} = -4(x-3)$ .
- (ii) What is the period of the motion?

1

3

- (iii) Express the velocity of the particle in the form  $\dot{x} = A\cos(2t \alpha)$ , 2 where  $\alpha$  is in radians.
- (iv) Hence, or otherwise, find all times within the first  $\pi$  seconds when 2 the particle is moving at 2 metres per second in either direction.
- (b) Consider the function  $f(x) = e^x e^{-x}$ .
  - (i) Show that f(x) is increasing for all values of x. 1
  - (ii) Show that the inverse function is given by

$$f^{-1}(x) = \log_e\left(\frac{x + \sqrt{x^2 + 4}}{2}\right).$$

(iii) Hence, or otherwise, solve  $e^x - e^{-x} = 5$ . Give your answer correct to 1 two decimal places.

2

Question 7 (12 marks) Use a SEPARATE writing booklet.



The graphs of the functions  $y = kx^n$  and  $y = \log_e x$  have a common tangent at x = a, as shown in the diagram.

| (i) | By considering gradients, show that $a^n = \frac{1}{nk}$ . | 1 |
|-----|------------------------------------------------------------|---|
|     | пк                                                         |   |

(ii) Express *k* as a function of *n* by eliminating *a*.

# Question 7 continues on page 11

#### Question 7 (continued)

(b) A small paintball is fired from the origin with initial velocity 14 metres per second towards an eight-metre high barrier. The origin is at ground level, 10 metres from the base of the barrier.

The equations of motion are

$$x = 14t \cos \theta$$
$$y = 14t \sin \theta - 4.9t^{2}$$

where  $\theta$  is the angle to the horizontal at which the paintball is fired and *t* is the time in seconds. (Do NOT prove these equations of motion.)



(i) Show that the equation of trajectory of the paintball is

$$y = mx - \left(\frac{1+m^2}{40}\right)x^2$$
, where  $m = \tan \theta$ .

(ii) Show that the paintball hits the barrier at height *h* metres when

$$m=2\pm\sqrt{3}-0.4h$$
.

Hence determine the maximum value of *h*.

(iii) There is a large hole in the barrier. The bottom of the hole is 3.9 metres 2 above the ground and the top of the hole is 5.9 metres above the ground. The paintball passes through the hole if *m* is in one of two intervals. One interval is  $2.8 \le m \le 3.2$ .

Find the other interval.

(iv) Show that, if the paintball passes through the hole, the range is

$$\frac{40m}{1+m^2}$$
 metres.

Hence find the widths of the two intervals in which the paintball can land at ground level on the other side of the barrier.

2

2

3

# STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

NOTE : 
$$\ln x = \log_e x$$
,  $x > 0$