

HIGHER SCHOOL CERTIFICATE EXAMINATION

2000
 CHEMISTRY
 2 UNIT

Time allowed-Three hours
(Plus 5 minutes reading time)

Directions to Candidates

- Board-approved calculators may be used.

Section I-Core

- Attempt ALL questions.
- Part A 15 multiple-choice questions, each worth 1 mark.

Complete your answers in either blue or black pen on the Answer Sheet provided.

- Part B 10 questions, each worth 3 marks.

Answer this Part in the Part B Answer Book.

- Part C 6 questions, each worth 5 marks.

Answer this Part in the Part C Answer Book.

- Write your Student Number and Centre Number on the cover of each Answer Book.
- You may keep this Question Book. Anything written in the Question Book will NOT be marked.

Section II—Electives

- Attempt ONE question.
- Each question is worth 25 marks.
- Answer the question in a separate Elective Answer Book.
- Write your Student Number and Centre Number on the cover of each Elective Answer Book.
- Write the Course, Elective Name, and Question Number on the cover of each Elective Answer Book.
- You may ask for extra Elective Answer Books if you need them.

A Data Sheet and Periodic Table are provided as a tear-out sheet at the back of this paper.

SECTION I—CORE

(75 Marks)
Attempt ALL questions.

PART A

Attempt ALL questions.
Each question is worth 1 mark.

Instructions for answering multiple-choice questions

- Complete your answers in either blue or black pen.
- Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $\quad 2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
AB
C \bigcirc
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B

CD \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A

D
correct
C

1 Lithium is a soft, light, reactive metal. Its electronic configuration is $1 s^{2} 2 s^{1}$.
Which statement is correct?
(A) Lithium will gain an electron to reach the structure $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$ when bonding occurs.
(B) $2 \mathrm{~s}^{1}$ represents the valence electron.
(C) The lithium ion is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}$.
(D) All the electrons shown take part in bonding.

2 What compound is shown?

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{C}=\underset{\mathrm{I}}{\mathrm{C}}-\mathrm{CH}_{2}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{CH}_{3} \\
\mathrm{CH}_{2}-\mathrm{CH}_{3}
\end{gathered}
$$

(A) 2-methyl-4-ethyl-1-pentene
(B) 2,4-dimethyl-1-hexene
(C) 3,5-dimethyl-5-hexene
(D) 4-ethyl-2-methyl-1-pentene

3 The hydrogen carbonate ion $\left(\mathrm{HCO}_{3}{ }^{-}\right)$is amphiprotic. Which statement is correct?
(A) $\mathrm{HCO}_{3}{ }^{-}$is the conjugate base of $\mathrm{CO}_{3}{ }^{2-}$
(B) $\mathrm{H}_{2} \mathrm{CO}_{3}$ is the conjugate acid of $\mathrm{CO}_{3}{ }^{2-}$
(C) $\mathrm{CO}_{3}{ }^{2-}$ is the conjugate base of $\mathrm{H}_{2} \mathrm{CO}_{3}$
(D) $\mathrm{H}_{2} \mathrm{CO}_{3}$ is the conjugate acid of HCO_{3}^{-}

4 Reading from left to right across period three in the Periodic Table, oxides and chlorides change from ionic to covalent in properties.

What is the major cause of this?
(A) Increasing atomic volume of the period three elements
(B) Decreasing first ionization energies of the period three elements
(C) Increasing electronegativity of the period three elements
(D) Decreasing number of valence electrons of the period three elements

5 Consider the reaction at equilibrium at $1000^{\circ} \mathrm{C}$:

$$
2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{CO}_{2}(g) \quad \Delta H=-566 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which change would result in a larger concentration of CO_{2} ?
(A) Decreasing the volume
(B) Increasing the temperature
(C) Adding a catalyst
(D) Decreasing the partial pressure of $\mathrm{CO}(\mathrm{g})$

6 A student wishes to determine the concentration of a weak acid by titration with a base of known concentration.

What is the most important property of the base?
(A) It should be weak.
(B) It should be strong.
(C) It should be a primary standard.
(D) It should not react with carbon dioxide.

7 Which chemicals will react to produce the compound shown?

(A) 2-propanol and acetic (ethanoic) acid
(B) 2-butanol and ethanol
(C) acetic (ethanoic) acid and 2-butanol
(D) butanoic acid and ethanol

8 An experiment is carried out to investigate the effect of temperature change on the reaction represented by the equation:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \quad \Delta H=54.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

What will result if the temperature increases?
(A) The value of the equilibrium constant will remain the same, but equilibrium will be reached more quickly.
(B) The value of the equilibrium constant will remain the same, but equilibrium will be reached more slowly.
(C) The value of the equilibrium constant will increase.
(D) The value of the equilibrium constant will decrease.

9 Water has a higher melting point than hydrogen fluoride.
What is the main reason for this?
(A) Water forms more extensive hydrogen bonds than hydrogen fluoride.
(B) The covalent bond between O and H is stronger than that between F and H .
(C) Water contains more ions than hydrogen fluoride.
(D) Water is more polar than hydrogen fluoride.

10 Which of the following solutions has the lowest pH ?
(A) $0.08 \mathrm{~mol} \mathrm{~L}^{-1}$ sulfuric acid
(B) $0.08 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid
(C) $0.20 \mathrm{~mol} \mathrm{~L}^{-1}$ acetic (ethanoic) acid
(D) $0.20 \mathrm{~mol} \mathrm{~L}^{-1}$ nitric acid

11 The table shows some properties of four solids, W, X, Y and Z.

Properties	W	X	Y	Z
Melting point $\left({ }^{\circ} \mathrm{C}\right)$	2300	800	80	1200
Soluble in water	no	yes	no	no
Solid state conducts electricity	no	no	no	yes
Molten state conducts electricity	no	yes	no	yes

What is the correct classification of the solids?
(A)
(B)
(C)
(D)

Metallic	Network covalent	Ionic	Molecular
W	X	Y	Z
X	Y	Z	W
Y	Z	W	X
Z	W	X	Y

12 When chloride ions are added to a solution containing $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ the following equilibrium is established:

$$
\underset{\text { Pink }}{\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+4 \mathrm{Cl}^{-}} \rightleftharpoons \underset{\text { Blue }}{\mathrm{CoCl}_{4}{ }^{2-}+6 \mathrm{H}_{2} \mathrm{O}}
$$

Solutions containing $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ and Cl^{-}are frequently violet in colour owing to the presence of significant amounts of both $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ and $\mathrm{CoCl}_{4}{ }^{2-}$.

Which of the following statements concerning such solutions is true?
(A) Diluting the solution with water will make the colour turn blue.
(B) If the reaction is endothermic, cooling the solution will make the colour turn pink.
(C) If the reaction is exothermic, heating the solution will make the colour turn blue.
(D) Adding a large amount of solid NaCl to the solution will make the colour turn pink.

13 Which of these substances can be oxidised to produce propanoic acid?
(A) 2-propanol
(B) propanone
(C) 1-butanol
(D) 1-butene

1450 mL of a $0.200 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of sodium hydroxide is diluted to 2.0 L with distilled water.

What is the pH of the diluted solution?
(A) 11.7
(B) $12 \cdot 3$
(C) $12 \cdot 7$
(D) $13 \cdot 3$

15 If compound A is heated, it decomposes according to the equation:

$$
2 A(g) \rightleftharpoons B(g)+C(g)
$$

The following diagram shows the progress of the reaction.

What is the equilibrium constant for the reaction?
(A) 0.8
(B) 2.0
(C) 4.0
(D) 10.0

PART B

Attempt ALL questions.

Each question is worth 3 marks.
Answer all questions in the Part B Answer Book provided.
In questions involving calculations you are advised to show working, as marks may be awarded for relevant working.

16 Calcium is a reactive, alkaline earth metal.
(a) In terms of shells and subshells, give the:
(i) electronic configuration of the calcium atom;
(ii) electronic configuration of the calcium ion.
(b) Give the formula of an ion, from the third period, that has the same electronic configuration as the calcium ion.

17 In the Part B Answer Book, complete the table which describes industrial and domestic applications of some organic compounds.

18 A sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$ solution has a pH of 8 , while an ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ solution has a pH of 5 .
(a) Write ionic equations to show why:
(i) a solution of $\mathrm{NaCH}_{3} \mathrm{COO}$ has a pH higher than 7;
(ii) a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ has a pH lower than than 7 .
(b) The pH of $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$ acetic (ethanoic) acid is 2.38 , while the pH of $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$ formic (methanoic) acid is $1 \cdot 87$. Explain this difference.

19 The table shows the effect of temperature on the equilibrium constant (K) for the reaction:

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)
$$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	K
700	2.63
800	0.915
900	0.384
1000	0.184
1100	0.098

(a) Plot the data on the grid provided in the Part B Answer Book. Include a curve of best fit to show the trend clearly.
(b) Is the reaction endothermic or exothermic? Give a reason for your answer.

20 Explain the following observations.
(a) Water has a lower molar mass than hydrogen sulfide, but its melting point is more than $80^{\circ} \mathrm{C}$ higher.
(b) Magnesium metal conducts electricity, but solid magnesium chloride does not.
(c) Lithium chloride is a solid with a melting point of more than $500^{\circ} \mathrm{C}$, while boron trichloride is a gas at room temperature.

21 Two compounds X and Y have the molecular formula $\mathrm{C}_{4} \mathrm{H}_{8}$. On reaction with HBr , compound X gives a single product, while compound Y gives two products.
(a) Give a structural formula for compound Y.
(b) Give the systematic name of compound X.
(c) Give the structural formula of the product formed by the reaction of X with HBr .

22 Natural gas (methane; CH_{4}) is an abundant fuel used for cooking, heating and power production. Its use in transportation is limited because it cannot be easily liquefied. There is considerable interest in finding an efficient catalyst for the following reaction, which produces methanol, a convenient liquid fuel:

$$
2 \mathrm{CH}_{4}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{OH}(g)
$$

(a) If the equilibrium mixture is cooled, methanol liquefies. What will this do to the concentration of methane $\left(\mathrm{CH}_{4}\right)$?
(b) What effect will increasing the partial pressure of oxygen have on the equilibrium constant?
(c) Why is it easier to liquefy methanol than methane?

23 In an experiment, a student mixed 15.0 mL of $0.030 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ with 20.0 mL of $0.010 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Ba}(\mathrm{OH})_{2}$.

Calculate the pH of the resulting solution.

24 A student has three unlabelled test tubes. They contain three different, but apparently identical, colourless liquids. One is 1-butanol, another is 2-methyl-2-propanol, and the third is 1-hexene. Describe the chemical tests the student should carry out to determine which liquid is in each test tube. In your answer, include expected observations.

25 The production of hydrogen iodide from hydrogen and iodine is given by the equation:

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

1.0 mol hydrogen and 1.0 mol iodine were introduced into a sealed 1 L reaction vessel at $500^{\circ} \mathrm{C}$ and allowed to come to equilibrium. It was then found that 1.55 mol hydrogen iodide had been produced.
(a) Calculate the equilibrium concentrations of H_{2} and I_{2} under these conditions.
(b) Calculate the value of the equilibrium constant (K) for the reaction.

PART C

Attempt ALL questions.

Each question is worth 5 marks.
Answer all questions in the Part C Answer Book provided.
In questions involving calculations you are advised to show working, as marks may be awarded for relevant working.

26 A student placed 25 g of glucose into a conical flask containing 80 mL water. She added a few crystals of citric acid and about 2 g of yeast and then mixed the contents by shaking.

She stood the apparatus in a warm place at about $30^{\circ} \mathrm{C}$ for $2-3$ days. The evolution of bubbles in the gas trap indicated that a reaction had occurred.

(a) Write a balanced equation for the reaction.
(b) Calculate the maximum possible yield of organic product.

The student purified the organic product using the apparatus shown in the diagram.
(c) Explain the purpose of each of the water baths.

27 Construct a table that describes the trend in ONE physical and ONE chemical property of EITHER of these groups of compounds:
sodium chloride, aluminium chloride and phosphorus trichloride;
OR
sodium oxide, aluminium oxide and diphosphorus pentoxide.

28 A chemist dissolved the calcium carbonate in a section of blocked pipe by soaking the section in an excess $(100.0 \mathrm{~mL})$ of $0.200 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid. After the calcium carbonate had dissolved, the unused hydrochloric acid was titrated with $0 \cdot 100 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium hydroxide. 33.3 mL of $0 \cdot 100 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium hydroxide was required.
(a) Write the equation for the reaction of calcium carbonate with hydrochloric acid.
(b) How many moles of sodium hydroxide were required to neutralise the unreacted hydrochloric acid?
(c) How many moles of hydrochloric acid reacted with the calcium carbonate?
(d) How many grams of calcium carbonate were in the pipe?
(e) Would the pH at the equivalence point of the titration have been acidic, neutral or basic? Explain your answer.

29 An alkene has the molecular formula $\mathrm{C}_{5} \mathrm{H}_{10}$.
(a) Give the balanced equation for the complete combustion of this alkene.
(b) Draw the structure of a straight chain alkene that has this molecular formula.
(c) Draw the structure of an alkane that has this molecular formula.
(d) Draw the structure of an organic product of the reaction between the alkene you drew in part (b) and cold alkaline KMnO_{4}.
(e) Give ONE safety precaution that must be used while carrying out the reaction in part (d).

30 The pH of blood in healthy humans is controlled by a number of buffer systems. One of the most important of these is the hydrogen carbonate/carbonic acid equilibrium:

$$
\mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q)
$$

Aqueous carbonic acid exists in equilibrium with water and gaseous carbon dioxide as follows:

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)
$$

One mechanism by which the body can respond to changes in blood pH is through altering the rate of breathing. For example, rapid breathing results in greater removal of $\mathrm{CO}_{2}(g)$ from the body.
(a) What are the relative rates of the forward and reverse reactions in the hydrogen carbonate/carbonic acid equilibrium in a healthy human?
(b) In a healthy human, concentrations of the components of the hydrogen carbonate/carbonic acid buffer system do not change. However, consumption of radioactive NaHCO_{3} by a healthy human results in the presence of measurable amounts of radioactive CO_{2} in their breath. Explain this observation.
(c) Antacids contain hydrogen carbonate salts and are used to combat acid indigestion. Explain why the consumption of antacid tablets can lead to an increased tendency to burp (belch).
(d) Explain what effect rapidly blowing up several balloons will have on the $\left[\mathrm{H}^{+}\right]$of blood.

31 Benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$, molar mass 122 g , is a weak monoprotic acid.
(a) When $0 \cdot 20 \mathrm{~g}$ of benzoic acid was dissolved in 1 L of water, the resulting $\left[\mathrm{H}^{+}\right]$was determined to be $2.9 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$. What is the K_{a} for benzoic acid?
(b) A solid sample weighing 0.600 g contained benzoic acid and inert matter. The entire sample was analysed by dissolution in water and titration with $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KOH}$. If 24.50 mL of KOH was required to reach the end point, what was the mass of benzoic acid in the solid sample?

BLANK PAGE

SECTION II—ELECTIVES

(25 Marks)
Attempt ONE question.
Answer the question in a SEPARATE Elective Answer Book.
In questions involving calculations you are advised to show working, as marks may be awarded for relevant working.
Pages
QUESTION 32 Chemical Energy 16-19
QUESTION 33 Oxidation and Reduction 20-22
QUESTION 34 Biological Chemistry 23-25
QUESTION 35 Chemistry and the Environment 26-27
(a) A student wanted to find the melting point of some beeswax. He heated it carefully in a waterbath until the wax melted. He then placed a thermometer into the molten beeswax and measured the temperature every minute for 20 minutes. A graph of his results is shown.

(i) What is happening to the beeswax between 9 and 13 minutes?
(ii) Explain why the curve is flat at this time.

QUESTION 32 (Continued)
(b) (i) Draw a diagram showing how this spirit burner and other apparatus could be used to measure the heat of combustion of ethanol.

(ii) What measurements must be taken to determine the experimental value for the heat of combustion of ethanol?
(iii) When the experiment is done, the value obtained is less than the theoretical value. Account for this.
(c) The graph shows the relationship between volume and absolute temperature for an ideal gas and two real gases.

(i) Describe the relationship for the ideal gas shown in this graph.
(ii) What experimental condition is necessary for this relationship to be true?
(iii) Explain what happens to the nitrogen at 77 K .
(iv) Why does helium behave more like an ideal gas than does nitrogen?

QUESTION 32 (Continued)
(d) A sample of hydrogen gas occupied 15 L at $25^{\circ} \mathrm{C}$. The temperature was raised to $50^{\circ} \mathrm{C}$ at a constant pressure of 101.3 kPa .
(i) Although the temperature had doubled, from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, the volume was less than 30 L. Explain this observation.
(ii) What volume would be measured at $50^{\circ} \mathrm{C}$?
(e) (i) Write the equation for the complete combustion of domestic heating oil. (Assume that the oil consists only of the hydrocarbon $\mathrm{C}_{15} \mathrm{H}_{32}$.)
(ii) The table shows average bond dissociation energies. Calculate the energy released by the complete combustion of one mole of domestic heating oil.

Bond	Bond dissociation energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{C}-\mathrm{C}$	346
$\mathrm{C}=\mathrm{C}$	614
$\mathrm{C} \equiv \mathrm{C}$	839
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{O}=\mathrm{O}$	498
$\mathrm{C}-\mathrm{H}$	414
$\mathrm{C}-\mathrm{O}$	358
$\mathrm{C}=\mathrm{O}$	804
$\mathrm{H}-\mathrm{O}$	463

(iii) Why should domestic fuel heaters be cleaned regularly for efficiency and safety reasons?

QUESTION 32 (Continued)
(f) Fuels have various properties that have to be considered when using them. The table compares four fuels. This information may be used together with your own knowledge when answering part (f) (i) - part (f) (iv).

Property	Petrol	Kerosene	Hydrogen	Ethanol
Heat of combustion $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	5460	10000	285	1360
Ignition temperature $\left({ }^{\circ} \mathrm{C}\right)$	495	260	560	363
Flash point $\left({ }^{\circ} \mathrm{C}\right)$	-40	+55	-	+13
Volatility $\left({ }^{\circ} \mathrm{C}\right)$	126	300	-253	78
Density $\left(\mathrm{g} \mathrm{mL}^{-1}\right)$	0.69	0.78	-	0.78
Molar mass (g)	114	210	2	46

(i) Which fuel provides the greatest amount of energy per gram?
(ii) A car has a 70 L petrol tank. Determine the energy released by the combustion of one full tank of petrol. (Assume complete combustion of the fuel.)
(iii) How many litres of hydrogen gas at $25^{\circ} \mathrm{C}$ and $101 \cdot 3 \mathrm{kPa}$ would be needed to supply the same amount of energy as 70 L of petrol?
(iv) Describe ONE advantage and ONE disadvantage of using ethanol as a fuel, compared with petrol.

End of question

(a) A method for cleaning silver 'the easy way' involves purchasing an aluminium course in many high schools.

(i) From this experiment, what would you conclude is necessary for iron to rust?
(ii) Rust is a complex mixture of compounds that forms after Fe^{2+} ions and OH^{-}ions are initially produced.

Write the half-equations and overall equation that produce the Fe^{2+} ions and the OH^{-}ions.
(iii) Adding salt to test tube 1 would accelerate the rusting process. Explain.
(iv) Describe another method to prevent iron from rusting.
(c) When random breath testing was first introduced in NSW, drivers were asked to 'blow into the bag'. This involved blowing a particular volume (a 'bag full') of air across crystals containing orange dichromate ions $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right)$ and some acid. The dichromate oxidised any ethanol present to acetic (ethanoic) acid, and was itself reduced to the green chromium ion $\left(\mathrm{Cr}^{3+}\right)$.

If the crystals turned green, this indicated that a driver was under the influence of alcohol.
(i) What is the oxidation state of chromium in the dichromate ion?
(ii) Write a balanced equation for the reaction that occurs between ethanol and the dichromate ion. Show relevant half-equations.
(d) A common laboratory experiment is to electroplate a carbon electrode with a metal. The diagram shows a possible set-up for a nickel plating experiment.

(i) Which electrode, X or Y, will be nickel plated? State the sign of the charge on the electrode, and whether it is the anode or cathode.
(ii) Write the half-equation for the reaction that occurs at:

1 the anode;
2 the cathode.
(iii) A different reaction would occur at the anode if it were replaced by a nickel electrode.

Write the half-equation for the reaction that would occur.
Explain why it would occur in preference to the original reaction in part (d) (ii) 1.

QUESTION 33 (Continued)
Marks
(e) A student constructed two electrochemical cells as shown. The aqueous cell solutions had a concentration of $1 \mathrm{~mol} \mathrm{~L}^{-1}$ with respect to the metal ions present.

Cell 1

Cell 2

(i) Use equations to describe the chemical changes that occur in Cell 1 as the cell operates.
(ii) In Cell 2, the solution in one half-cell is initially an orange colour due to the mixture of the pale green Fe^{2+} ions and the orange Fe^{3+} ions. The other half is coloured blue due to the Cu^{2+} ions. Describe the colour changes the student would see in each half of Cell 2 if the reaction proceeded until no further change took place.
(iii) Calculate the initial potential difference across Cell 1.
(iv) As the reaction proceeds, the voltage in the cell drops. Explain.
(v) What is the purpose of the salt bridge joining each half-cell?
(vi) In Cell 2, what is the oxidising agent, and at which electrode does oxidation occur?

End of question

QUESTION 34 Biological Chemistry
(a) Invertase catalyses the hydrolysis of the disaccharide sucrose to a mixture of two different monosaccharides, known as invert sugar. Invert sugar is present in confectionery and in the syrup of canned fruits, and is sweeter than sucrose. The structure of sucrose is shown in the diagram.

(i) Draw the structures of the two monosaccharides present in invert sugar, and name them.
(ii) Name TWO polymers composed of one of the monosaccharides named in part (i).
(iii) What is the function of one of the polymers named in part (ii)?
(b) It is estimated that $7.92 \times 10^{25} \mathrm{~g}$ of carbon dioxide is used in photosynthesis each year.
(i) In what form do plants store glucose?
(ii) What mass of glucose is produced from photosynthesis each year?
(iii) Explain the role of water in the light and dark reactions of photosynthesis.

QUESTION 34 (Continued)
(c) The diagrams show different aspects of protein structure.

(i) Write the letter(s) from the diagrams that correspond(s) to:

1 the primary structure of a protein;
2 the secondary structure of a protein;
3 the tertiary structure of a protein.
(ii) Give TWO examples of forces within a protein that determine its tertiary structure.
(iii) Name the type of covalent bond that links the primary structure.

QUESTION 34 (Continued)
(d) The structure of a dipeptide is

Draw the structures of the amino acids from which it is made.
(e) (i) What chemical test could you use to tell the difference between a slice of apple and a slice of potato? Describe the test, and state what would be observed in each slice.
(ii) Placing starch on the tongue for several minutes slowly results in a distinct, sweet taste. By contrast, placing cellulose on the tongue does not result in a sweet taste. Explain why this occurs.
(iii) Explain how an enzyme increases the rate of a chemical reaction.
(iv) The enzyme pepsin is found in the stomach, which has a pH of about 1. Would you expect pepsin to be able to function in the small intestine, which has a pH of about 8 ? Explain your answer.
(f) Organisms that use the Krebs cycle have an advantage over those that do not. What advantage does the Krebs cycle give to an organism?

End of question

QUESTION 35 Chemistry and the Environment
(a) Water samples were taken by students from rain water, sea water and the effluent of a chrome-plating factory. The results are shown.

	A	B	C
pH	$6 \cdot 5$	$2 \cdot 3$	$7 \cdot 2$
O_{2}	high	nil	high
Total solids	nil	high	low
Halides	nil	very high	high
Micro-organisms	nil	nil	low

(i) Identify the samples B and C, and state your reasons.
(ii) The pH of freshly distilled water is $7 \cdot 0$. After standing for a short time, the pH drops below 7 .

Why is this so? Give an equation to support your answer.
(iii) How would the students have determined the level of:

1 halides;
2 total solids;
3 micro-organisms;
in the samples of water?
(b) Nitrogen monoxide (nitric oxide) and nitrogen dioxide are important components of photochemical smog. Write equations to show their formation from atmospheric gases.
(c) Acid rain, predominantly sulfuric acid, is having a major corrosive effect on the monuments of the Parthenon in Athens. These monuments are made of marble (calcium carbonate).
(i) Write equations to show how sulfur dioxide is converted to sulfuric acid in acid rain.
(ii) Write an equation to show the reaction of sulfuric acid with marble.
(iii) Over a two-year period, 5 g of marble corrodes from a statue. How many grams of sulfur dioxide are needed to cause this corrosion?
(d) Ozone is an allotrope of oxygen.

4
(i) Ozone is both toxic and essential to humans. Explain this statement.
(ii) CF_{4} and $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ can both be used as refrigerants and propellants. Which can destroy ozone? Explain your answer, giving equations where appropriate.
(e) Carbon monoxide, carbon dioxide and hydrogen sulfide are gases found in the atmosphere. Describe a test for each gas.
(f) Disposal of radioactive waste is a growing environmental problem.
(i) Name a major waste product of nuclear reactors.
(ii) Discuss TWO factors that must be considered in the disposal of nuclear waste.

End of paper

BLANK PAGE

BLANK PAGE

BLANK PAGE

CHEMISTRY DATA SHEET

Values of several numerical constants

Avogadro's constant, N_{A}
Gas constant, R
Mass of electron, m_{e}
Mass of neutron, m_{n}
Mass of proton, m_{p}
Volume of 1 mole ideal gas:
at $101.3 \mathrm{kPa}(1.00 \mathrm{~atm})$ and at $273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$
at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$
Ionisation constant for water
at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right), K_{w}$
$6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$9.109 \times 10^{-31} \mathrm{~kg}$
$1.675 \times 10^{-27} \mathrm{~kg}$
$1.673 \times 10^{-27} \mathrm{~kg}$
22.41 L
24.47 L

Some standard potentials

$\mathrm{K}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{K}(s)$	$-2.94 \mathrm{~V}$
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ba}(s)$	-2.91 V
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ca}(\mathrm{s})$	$-2.87 \mathrm{~V}$
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Na}(s)$	$-2.71 \mathrm{~V}$
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\operatorname{Mg}(s)$	$-2.36 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Al}(s)$	$-1.68 \mathrm{~V}$
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}(\mathrm{s})$	$-1.18 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{OH}^{-}$	$-0.83 \mathrm{~V}$
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Zn}(\mathrm{s})$	$-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Fe}(s)$	$-0.44 \mathrm{~V}$
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ni}(s)$	$-0.24 \mathrm{~V}$
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Sn}(\mathrm{s})$	$-0.14 \mathrm{~V}$
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Pb}(s)$	$-0.13 \mathrm{~V}$
$\mathrm{H}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$	0.00 V
$\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{SO}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}$	0.16 V
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.34 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	\rightleftharpoons	$2 \mathrm{OH}^{-}$	0.40 V
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(s)$	0.52 V
$\frac{1}{2} \mathrm{I}_{2}(s)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.54 V
$\frac{1}{2} \mathrm{I}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.62 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ag}(s)$	0.80 V
$\frac{1}{2} \mathrm{Br}_{2}(l)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.08 V
$\frac{1}{2} \mathrm{Br}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	$1 \cdot 10 \mathrm{~V}$
$\frac{1}{2} \mathrm{O}_{2}(g)+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{H}_{2} \mathrm{O}$	1.23 V
$\frac{1}{2} \mathrm{Cl}_{2}(g)+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.36 V
$\frac{1}{2} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+7 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cr}^{3+}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}$	1.36 V
$\frac{1}{2} \mathrm{Cl}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.40 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	1.51 V
$\frac{1}{2} \mathrm{~F}_{2}(g)+\mathrm{e}^{-}$	\rightleftharpoons	F^{-}	2.89 V

PERIODIC TABLE

				$\begin{array}{\|cc\|} \hline 1 & \mathrm{H} \\ & \\ \\ \text { Hydrogen } \end{array}$					Symbol of element Name of element								$\begin{array}{\|cc} \hline 2 & \\ & \mathrm{He} \\ 4.003 \\ \text { Helium } \end{array}$			
$\begin{array}{\|cc} \hline 3 \\ \begin{array}{c} \mathrm{Li} \\ 6.941 \\ \text { Lithium } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ \mathrm{Be} \\ 9.012 \\ \text { Beryllium } \\ \hline \end{array}$								$\begin{array}{\|cc\|} \hline 5 & \mathrm{~B} \\ & \\ 10.81 \\ \text { Boron } \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 6 & \mathrm{C} \\ 12.01 \\ \text { Carbon } \\ \hline \end{array}$	$\begin{array}{\|cc} 7 \\ \hline 14.01 \\ \text { Nitrogen } \\ \text { N } \end{array}$	$\begin{array}{\|cc} 8 & \mathrm{O} \\ 16 \cdot 00 \\ \text { oxygen } \end{array}$	$\begin{array}{\|cc} 9 \\ \mathrm{~F} \\ & \mathrm{~F} \cdot 00 \\ \text { Fluorine } \end{array}$	$\begin{gathered} 10 \\ \\ \hline 20.18 \\ \text { Neon } \\ \hline \end{gathered}$						
$\begin{array}{\|c\|} \hline 11 \mathrm{Na} \\ 22 \cdot 99 \\ \text { Sodium } \end{array}$	$\begin{gathered} 12 \mathrm{Mg} \\ 24 \cdot 31 \\ \text { Magnesium } \end{gathered}$											$\begin{array}{\|c} \hline 13 \mathrm{Al} \\ 26 \cdot 98 \\ \text { Aluminium } \end{array}$	$\begin{array}{\|c} 14 \\ \hline \mathrm{Si} \\ 28 \cdot 09 \\ \text { Silicon } \end{array}$	$\begin{array}{\|c\|} \hline 15 \mathrm{P} \\ 30.97 \\ \text { Phosphorus } \end{array}$	$\begin{array}{\|c\|c\|} \hline 16 \mathrm{~S} \\ 32.07 \\ \text { Sulfur } \end{array}$	$\begin{gathered} 17 \mathrm{Cl} \\ 35 \cdot 45 \\ \text { Chlorine } \end{gathered}$	$\begin{array}{\|c} 18 \mathrm{Ar} \\ 39.95 \\ \text { Argon } \end{array}$			
$\begin{gathered} 19 \mathrm{~K} \\ 39 \cdot 10 \\ \text { Poassium } \end{gathered}$	$\begin{array}{\|cc} 20 & \mathrm{Ca} \\ 40.08 \\ \text { Calcium } \end{array}$	$\begin{gathered} 21 \\ \hline \text { Sc } \\ 44.96 \\ \text { Scandium } \end{gathered}$	$\begin{array}{\|c\|} \hline 22 \mathrm{Ti} \\ 47.88 \\ \text { Titanium } \\ \hline \end{array}$	$\begin{array}{\|c} 23 \mathrm{~V} \\ 50.94 \\ \text { Vanadium } \end{array}$	$\begin{array}{\|c\|} \hline 24 \mathrm{Cr} \\ 52 \cdot 00 \\ \text { Chromium } \end{array}$	$\begin{array}{\|c} 25 \mathrm{Mn} \\ 54 \cdot 94 \\ \text { Manganese } \end{array}$	$\begin{gathered} 26 \\ \\ 55 \cdot 85 \\ \text { Iron } \\ \hline \end{gathered}$	$\begin{array}{\|c} 27 \\ \text { Co } \\ 58.93 \\ \text { Cobalt } \end{array}$				$\begin{array}{\|c\|} \hline 28 \\ \mathrm{Ni} \\ 58.69 \\ \text { Nickel } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 29 \\ 63.55 \\ 6.50 \\ \text { Copper } \\ \hline \end{array}$	$\begin{gathered} 30 \mathrm{Zn} \\ 65 \cdot 39 \\ \text { Zinc } \end{gathered}$	$\begin{array}{\|c\|} \hline 31 \\ \mathrm{Ga} \\ 69.72 \\ \text { Callium } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 32 \mathrm{Ge} \\ 72 \cdot 59 \\ \text { Germanium } \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} 33 \\ \\ 74.92 \\ 7 \\ \text { Assenic } \end{array} \\ \hline \end{array}$	$\begin{gathered} 34 \\ \hline 78.96 \\ \text { Selenium } \end{gathered}$	$\begin{gathered} 35 \mathrm{Br} \\ 79.90 \\ \text { Bromine } \end{gathered}$	$\begin{gathered} 36 \mathrm{Kr} \\ 83.80 \\ \text { Krypton } \end{gathered}$
$\begin{array}{\|c\|} \hline 37 \mathrm{Rb} \\ 85 \cdot 47 \\ \text { Rubidium } \end{array}$	$\begin{gathered} 38 \mathrm{Sr} \\ 87 \cdot 62 \\ \text { Strontium } \end{gathered}$	$\begin{gathered} 39 \mathrm{Y} \\ 88.91 \\ \text { Ytrium } \end{gathered}$	$\begin{gathered} 40 \mathrm{Zr} \\ 91 \cdot 22 \\ \text { Zirconium } \end{gathered}$	$\begin{gathered} 41 \mathrm{Nb} \\ 92 \cdot 91 \\ \text { Niobium } \end{gathered}$	$\begin{array}{\|c\|} \hline 42 \mathrm{Mo} \\ 95.94 \\ \text { Molybdenum } \end{array}$	$\begin{array}{\|c\|} \hline 43 \mathrm{Tc} \\ 98.91 \\ \text { Technetium } \end{array}$	$\begin{gathered} \hline 44 \mathrm{Ru} \\ 101 \cdot 1 \\ \text { Ruthenium } \end{gathered}$	$\begin{gathered} 45 \mathrm{Rh} \\ 102 \cdot 9 \\ \text { Rhodium } \end{gathered}$	46 Pd $106 \cdot 4$ Palladium	$\begin{gathered} 47 \mathrm{Ag} \\ 107.9 \\ \text { Silver } \end{gathered}$	$\begin{array}{\|c} \hline 48 \mathrm{Cd} \\ 112 \cdot 4 \\ \text { Cadmium } \end{array}$	$\begin{array}{\|c} 49 \\ \text { In } \\ 114 \cdot 8 \\ \text { Indium } \end{array}$	$\left.\right\|_{\substack{50 \\ \mathrm{Sn} \\ 118 \cdot 7 \\ \mathrm{Tin}}}$	$\begin{gathered} 51 \mathrm{Sb} \\ 121 \cdot 8 \\ \text { Antimony } \end{gathered}$	$\begin{gathered} 52 \mathrm{Te} \\ 127 \cdot 6 \\ \text { Tellurium } \end{gathered}$	$\begin{array}{\|cc} 53 & \mathrm{I} \\ & 126 \cdot 9 \\ \text { Iodine } \end{array}$	$\begin{gathered} 54 \mathrm{Xe} \\ 131 \cdot 3 \\ \text { Xenon } \end{gathered}$			
$\left\lvert\, \begin{gathered} 55 \mathrm{Cs} \\ 132 \cdot 9 \\ \text { Cesium } \end{gathered}\right.$	$\begin{gathered} 56 \\ \mathrm{Ba} \\ 137.3 \\ \text { Barium } \end{gathered}$	$\begin{array}{\|c\|} \hline 57 \mathrm{La} \\ 138 \cdot 9 \\ \text { Lanthanum } \end{array}$	$\begin{array}{\|c} 72 \mathrm{Hf} \\ 118 \cdot 5 \\ \text { Hafnium } \end{array}$	$\begin{gathered} 73 \mathrm{Ta} \\ 1 \text { Tan. } \\ \text { Tanalum } \end{gathered}$	$\begin{gathered} 74 \mathrm{~W} \\ 183 \cdot 9 \\ \text { Tungsten } \end{gathered}$	$\begin{array}{\|c\|} \hline 75 \mathrm{Re} \\ 186 \cdot 2 \\ \text { Rhenium } \end{array}$	$\begin{gathered} 76 \mathrm{Os} \\ 190 \cdot 2 \\ \text { Osmium } \end{gathered}$	$\begin{array}{\|c\|} \hline 77 \\ \hline \text { Ir } \\ 192 \cdot 2 \\ \\ \text { Iridium } \\ \hline \end{array}$	$\begin{gathered} 78 \\ \hline \text { Pt } \\ 195 \cdot 1 \\ \text { Platinum } \end{gathered}$	$\begin{gathered} 79 \mathrm{Au} \\ \substack{197 \cdot 0 \\ \text { Gold }} \end{gathered}$	$\begin{aligned} & 80 \mathrm{Hg} \\ & 20.6 \\ & \text { Mercury } \end{aligned}$			$\begin{gathered} 83 \mathrm{Bi} \\ 20.0 \\ \text { Bismuth } \end{gathered}$	${ }^{84} \stackrel{\text { Po }}{-}$	${ }_{85}^{85} \stackrel{\text { At }}{\text { Astatine }}$	${ }^{86}$Rn Radon			
${ }^{87} \frac{\mathrm{Fr}}{\mathrm{Francium}}$	88 $222 \cdot 0$ 220.0 Radium	${ }^{89} \begin{gathered} \text { Ac } \\ \text { Actinium } \end{gathered}$	104	105	106															

$\begin{array}{\|c} 58 \mathrm{Ce} \\ 140.1 \\ \text { Cerium } \end{array}$	$\begin{gathered} 59 \mathrm{Pr} \\ 110 \cdot 9 \\ \text { Praseodymiu } \end{gathered}$	$\begin{gathered} \hline 60 \mathrm{Nd} \\ 144.2 \\ \text { Neodymium } \end{gathered}$	$\begin{array}{\|l} 61 \\ \hline \text { Promethium } \\ \hline \end{array}$	${ }^{62 \mathrm{Sm}}$	$\begin{gathered} 63 \mathrm{Eu} \\ 152.0 \\ \text { Europium } \end{gathered}$	$\begin{array}{\|c} 64 \mathrm{Gd} \\ 157 \cdot 3 \\ \text { Gadolinium } \end{array}$	$\begin{array}{\|c} 65 \mathrm{~Tb} \\ 158.9 \\ \text { Terbium } \end{array}$	$\begin{array}{\|c\|} \hline 66 \\ \text { Dy } \\ 162.5 \\ \text { Dysprosium } \end{array}$	$\begin{array}{\|c} 67 \\ \text { Ho } \\ 164 \cdot 9 \\ \text { Holmium } \end{array}$	$\begin{array}{\|c} 68 \mathrm{Er} \\ 167 \cdot 3 \\ \text { Erbium } \end{array}$	$\begin{array}{\|c\|} \hline 69 \mathrm{Tm} \\ 1 \text { Thulium } \\ \text { Thulium } \end{array}$	$\begin{gathered} 70 \mathrm{Yb} \\ 113 \cdot 0 \\ \text { Yterbium } \end{gathered}$	$\begin{array}{\|c\|} \hline 71 \\ \begin{array}{c} \mathrm{Lu} \\ 175 \cdot 0 \\ \text { Lutetium } \end{array} \\ \hline \end{array}$
$\begin{gathered} 90 \mathrm{Th} \\ 232 \cdot 0 \\ \text { Thorium } \end{gathered}$	$\begin{gathered} 91 \\ \\ 231 \cdot 0 \\ 231 \end{gathered}$	$\begin{gathered} 92 \mathrm{U} \\ 238.0 \\ \text { Uranium } \end{gathered}$	$\begin{gathered} 93 \mathrm{~Np} \\ \quad 237 \cdot 0 \\ \text { Neppunium } \end{gathered}$			${ }^{96} \mathrm{Cm}$	${ }^{97} \frac{\mathrm{Bk}}{\text { Berkelium }}$	${ }^{98} \frac{\mathrm{Cf}}{\text { Califomium }}$	$\underbrace{\text { Es }}_{\text {Einsteinium }}$	${ }_{\text {Femmium }}^{{ }^{100}}$	${ }^{101} \begin{gathered}\text { Md } \\ \text { Mendereium }\end{gathered}$	${ }^{02}$ No Nobelium	${ }^{103} \frac{\mathrm{Lr}}{\text { Lawrenciu }}$

Student Number

Centre Number
BOARD OF STUDIES NEW SOUTH W ALES \square

HIGHER SCHOOL CERTIFICATE EXAMINATION

2000 CHEMISTRY

2 UNIT

PART B ANSWER BOOK

Directions to Candidates

- Write your Student Number and Centre Number at the top right-hand corner of this page.
- You should receive this Answer Book with an Answer Sheet for Part A, a Part C Answer Book and an Elective Answer Book.
- Answer Questions 16 to 25 in this Answer Book.

MARKER'S USE ONLY			
PART	Mark	Marker	Check
B			

PART B

Questions 16 to 25 are worth 3 marks each.
Attempt ALL questions.
Answer the questions in the space provided.
You should show sufficient working to allow the marker to follow your method.
16 (a) (i) \qquad
(ii) \qquad
(b) \qquad

17

IUPAC name of compound	Domestic/industrial application
	Antifreeze
Butane	
Ethene	

18 (a) (i) \qquad
(ii)
(b) \qquad
\qquad
R
(b) \qquad
\qquad

20 (a) \qquad
\qquad
\qquad
\qquad
(b) \qquad
\qquad
\qquad
\qquad
(c) \qquad
\qquad
\qquad
\qquad
(b)
(c)

22 (a)
(b)
(c) \qquad
\qquad
(b)

BLANK PAGE

BLANK PAGE

Centre Number
BOARD OF STUDIES NEW SOUTH W ALES \square

HIGHER SCHOOL CERTIFICATE EXAMINATION

2000 CHEMISTRY 2 UNIT PART C ANSWER BOOK

Directions to Candidates

- Write your Student Number and Centre Number at the top right-hand corner of this page.
- You should receive this Answer Book with an Answer Sheet for Part A, a Part B Answer Book and an Elective Answer Book.
- Answer Questions 26 to 31 in this Answer Book.

MARKER'S UsE ONLY			
PART	Mark	Marker	Check
C			

PART C

Questions 26 to 31 are worth 5 marks each.
Attempt ALL questions.
Answer the questions in the space provided.
You should show sufficient working to allow the marker to follow your method.

26 (a)

(b)
(c) Hot water bath \qquad
\qquad
\qquad

Ice water bath \qquad
\qquad
\qquad

28 (a)
(b)
(c)
(d)
(e)
(b)
(c)
(d)
(e)
(b)
\qquad
\qquad
\qquad
\qquad
(c) \qquad
\qquad
\qquad
\qquad
(d) \qquad
\qquad
\qquad
\qquad

31 (a)
(b)

BLANK PAGE

BLANK PAGE

