

BOARD OF STUDIES

NEW SOUTH WALES

HIGHER SCHOOL CERTIFICATE EXAMINATION

1995
 MATHEMATICS
 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON)

Time allowed-Two hours
(Plus 5 minutes' reading time)

Directions to Candidates

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on page 12.
- Board-approved calculators may be used.
- Each question attempted is to be returned in a separate Writing Booklet clearly marked Question 1, Question 2, etc. on the cover. Each booklet must show your Student Number and the Centre Number.
- You may ask for extra Writing Booklets if you need them.

QUESTION 1. Use a separate Writing Booklet.
(a) On a number plane, indicate the region specified by $y \leq|x-1|$ and $y \leq 1$.
(b) Evaluate $\int_{1}^{4} y d x$ if $x y=1$.
(c) Find $\lim _{x \rightarrow 0} \frac{\sin x}{5 x}$.

1
(d) Factorize $2^{n+1}+2^{n}$, and hence write $\frac{2^{1001}+2^{1000}}{3}$ as a power of 2 .

2
(e) Use the substitution $u=9-x^{2}$ to find $\int_{0}^{1} 6 x \sqrt{9-x^{2}} d x$.

4

QUESTION 2. Use a separate Writing Booklet.
(a) Let $f(x)=x^{3}+5 x^{2}+17 x-10$. The equation $f(x)=0$ has only one real root.
(i) Show that the root lies between 0 and 2 .
(ii) Use one application of the 'halving the interval' method to find a smaller interval containing the root.
(iii) Which end of the smaller interval found in part (ii) is closer to the root? Briefly justify your answer.
(b)

The shaded area is bounded by the curve $x y=3$, the lines $x=1$ and $y=6$, and the two axes. A solid is formed by rotating the shaded area about the y axis.

Find the volume of this solid by considering separately the regions above and below $y=3$.
(c) Consider the equation

$$
x^{3}+6 x^{2}-x-30=0 .
$$

One of the roots of this equation is equal to the sum of the other two roots.
Find the values of the three roots.

QUESTION 3. Use a separate Writing Booklet.
(a)

A security lock has 8 buttons labelled as shown. Each person using the lock is given a 3-letter code.
(i) How many different codes are possible if letters can be repeated and their order is important?
(ii) How many different codes are possible if letters cannot be repeated and their order is important?
(iii) Now suppose that the lock operates by holding 3 buttons down together, so that order is NOT important. How many different codes are possible?
(b) Find the value of the term that does not depend on x in the expansion of

$$
\left(x^{2}+\frac{3}{x}\right)^{6}
$$

QUESTION 3. (Continued)
(c)

Let $P\left(2 a, a^{2}\right)$ be a point on the parabola

$$
y=\frac{x^{2}}{4}
$$

and let S be the point $(0,1)$. The tangent to the parabola at P makes an angle of β with the x axis. The angle between $S P$ and the tangent is θ. Assume that $a>0$, as indicated.
(i) Show that $\tan \beta=a$.
(ii) Show that the gradient of $S P$ is $\frac{1}{2}\left(a-\frac{1}{a}\right)$.
(iii) Show that $\tan \theta=\frac{1}{a}$.
(iv) Hence find the value of $\theta+\beta$.
(v) Find the coordinates of P if $\theta=\beta$.

QUESTION 4. Use a separate Writing Booklet.

Consider the function $f(x)=\frac{e^{x}}{3+e^{x}}$.
Note that e^{x} is always positive, and that $f(x)$ is defined for all real x.
(a) Show that $f(x)$ has no stationary points.
(b) Find the coordinates of the point of inflexion, given that $f^{\prime \prime}(x)=\frac{3 e^{x}\left(3-e^{x}\right)}{\left(3+e^{x}\right)^{3}}$.
(c) Show that $0<f(x)<1$ for all x.
(d) Describe the behaviour of $f(x)$ for very large positive and very large negative values of x, i.e. as $x \rightarrow \infty$ and $x \rightarrow-\infty$.
(e) Sketch the curve $y=f(x)$.
(f) Explain why $f(x)$ has an inverse function.
(g) Find the inverse function $y=f^{-1}(x)$.

QUESTION 5. Use a separate Writing Booklet.
(a) (i) Solve the equation $\sin 2 x=2 \sin ^{2} x$ for $0<x<\pi$.
(ii) Show that if $0<x<\frac{\pi}{4}$, then $\sin 2 x>2 \sin ^{2} x$.
(iii) Find the area enclosed between the curves $y=\sin 2 x$ and $y=2 \sin ^{2} x$ for $0 \leq x \leq \frac{\pi}{4}$.
(b) In a Jackpot Lottery, 1500 numbers are drawn from a barrel containing the 100000 ticket numbers available.

After all the 1500 prize-winning numbers are drawn, they are returned to the barrel and a jackpot number is drawn. If the jackpot number is the same as one of the 1500 numbers that have already been selected, then the additional jackpot prize is won.

The probability that the jackpot prize is won in a given game is thus

$$
p=\frac{1500}{100000}=0 \cdot 015 .
$$

(i) Calculate the probability that the jackpot prize will be won exactly once in 10 independent lottery games.
(ii) Calculate the probability that the jackpot prize will be won at least once in 10 independent lottery games.
(iii) The jackpot prize is initially $\$ 8000$, and it increases by $\$ 8000$ each time the prize is NOT won.

Calculate the probability that the jackpot prize will exceed \$200 000 when it is finally won.

QUESTION 6. Use a separate Writing Booklet.
(a)

$P T$ is a tangent to the circle $P R Q$, and $Q R$ is a secant intersecting the circle in Q and R. The line $Q R$ intersects $P T$ at T.

Copy or trace the diagram into your Writing Booklet.
(i) Prove that the triangles $P R T$ and $Q P T$ are similar.
(ii) Hence prove that $P T^{2}=Q T \times R T$.

QUESTION 6. (Continued)
(b)

A long cable is wrapped over a wheel of radius 3 metres and one end is attached to a clip at T. The centre of the wheel is at O, and $Q R$ is a diameter. The point T lies on the line $O R$ at a distance x metres from O.

The cable is tangential to the wheel at P and Q as shown. Let $\angle P O R=\theta$ (in radians).

The length of cable in contact with the wheel is ℓ metres; that is, the length of the arc between P and Q is ℓ metres.
(i) Explain why $\cos \theta=\frac{3}{x}$.
(ii) Show that $\ell=3\left[\pi-\cos ^{-1}\left(\frac{3}{x}\right)\right]$.
(iii) Show that $\frac{d \ell}{d x}=\frac{-9}{x \sqrt{x^{2}-9}}$.

What is the significance of the fact that $\frac{d \ell}{d x}$ is negative?
(iv) Let $s=\ell+P T$.

Using part (a), or otherwise, express s in terms of x.
(v) The clip at T is moved away from O along the line $O R$ at a constant speed of 2 metres per second.

Find the rate at which s changes when $x=10$.

QUESTION 7. Use a separate Writing Booklet.

A cap C is lying outside a softball field, r metres from the fence F, which is h metres high. The fence is R metres from the point O, and the point P is h metres above O. Axes are based at O, as shown.

At time $t=0$, a ball is hit from P at a speed V metres per second and at angle α to the horizontal, towards the cap.
(a) The equations of motion of the ball are

$$
\ddot{x}=0, \quad \ddot{y}=-g .
$$

Using calculus, show that the position of the ball at time t is given by

$$
\begin{aligned}
& x=V t \cos \alpha \\
& y=V t \sin \alpha-\frac{1}{2} g t^{2}+h .
\end{aligned}
$$

(b) Hence show that the trajectory of the ball is given by

$$
y=h+x \tan \alpha-x^{2} \frac{g}{2 V^{2} \cos ^{2} \alpha} .
$$

(c) The ball clears the fence. Show that

$$
V^{2} \geq \frac{g R}{2 \sin \alpha \cos \alpha}
$$

(d) After clearing the fence, the ball hits the cap C. Show that

$$
\tan \alpha \geq \frac{R h}{(R+r) r}
$$

(e) Suppose that the ball clears the fence, and that $V \leq 50, g=10, R=80$, and $h=1$. What is the closest point to the fence where the ball can land?

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

