

BOARD OF STUDIES new south wases

## HIGHER SCHOOL CERTIFICATE EXAMINATION

# 1998 <br> MATHEMATICS 4 UNIT (ADDITIONAL) 

Time allowed-Three hours
(Plus 5 minutes reading time)

## Directions to Candidates

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on page 12.
- Board-approved calculators may be used.
- Answer each question in a SEPARATE Writing Booklet.
- You may ask for extra Writing Booklets if you need them.

QUESTION 1. Use a SEPARATE Writing Booklet.
(a) Evaluate $\int_{0}^{3} \frac{6}{9+x^{2}} d x$.
(b) Find $\int x^{2} \ln x d x$.
(c) Find $\int \frac{\sin ^{3} x}{\cos ^{2} x} d x$.
(d) Using the substitution $u^{2}=4-x^{2}$, or otherwise, evaluate $\int_{0}^{2} x^{3} \sqrt{4-x^{2}} d x$.
(e) (i) Find the remainder when $x^{2}+6$ is divided by $x^{2}+x-6$.
(ii) Hence, find $\int \frac{x^{2}+6}{x^{2}+x-6} d x$.

QUESTION 2. Use a SEPARATE Writing Booklet.
(a) Evaluate $i^{1998}$.

1
(b) Let $z=\frac{18+4 i}{3-i}$.
(i) Simplify $(18+4 i) \overline{(3-i)}$.
(ii) Express $z$ in the form $a+i b$, where $a$ and $b$ are real numbers.
(iii) Hence, or otherwise, find $|z|$ and $\arg (z)$.
(c) Sketch the region in the complex plane where the inequalities

$$
|z-2+i| \leq 2 \quad \text { and } \quad \operatorname{Im}(z) \geq 0
$$

both hold.
(d)


The points $P$ and $Q$ in the complex plane correspond to the complex numbers $z$ and $w$ respectively. The triangle $O P Q$ is isosceles and $\angle P O Q$ is a right angle.

Show that $z^{2}+w^{2}=0$.
(e) (i) By solving the equation $z^{3}+1=0$, find the three cube roots of -1 .
(ii) Let $\lambda$ be a cube root of -1 , where $\lambda$ is not real. Show that $\lambda^{2}=\lambda-1$.
(iii) Hence simplify $(1-\lambda)^{6}$.

QUESTION 3. Use a SEPARATE Writing Booklet.
(a) Let $f(x)=x-\frac{4}{x}$. Provide separate half-page sketches of the graphs of the following functions.
(i) $y=f(x)$
(ii) $y=\sqrt{f(x)}$
(iii) $y=e^{f(x)}$

Label each graph with its equation.
(b) Let $I_{n}=\int_{1}^{e}(\ln x)^{n} d x$.
(i) Show that $I_{n}=e-n I_{n-1}$ for $n=1,2,3, \ldots$
(ii) Hence evaluate $I_{4}$.
(c) The population $P$ of a town decreases at a rate proportional to the number by which the population exceeds 1000 . Thus

$$
\frac{d P}{d t}=-k(P-1000)
$$

(i) Show that $P=1000+A e^{-k t}$, where $A$ and $k$ are constants, is a solution of this equation.
(ii) Initially the population of the town was 2500 . Ten years later, it had fallen to 1900 .

When will the population be 1500 ?
(iii) What does this mathematical model predict about the population of the town in the long term?

QUESTION 4. Use a SEPARATE Writing Booklet.
(a) (i) Suppose that $k$ is a double root of the polynomial equation $f(x)=0$. Show that $f^{\prime}(k)=0$.
(ii) What feature does the graph of a polynomial have at a root of multiplicity 2 ?
(iii) The polynomial $P(x)=a x^{7}+b x^{6}+1$ is divisible by $(x-1)^{2}$. Find the coefficients $a$ and $b$.
(iv) Let $E(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}$. Prove $E(x)=0$ has no double roots.
(b)


A planet $P$ of mass $m$ kilograms moves in a circular orbit of radius $R$ metres around a star $S$. Coordinate axes are taken in the plane of the motion, centred at $S$. The position of the planet at time $t$ seconds is given by the equations

$$
x=R \cos \frac{2 \pi t}{T} \quad \text { and } \quad y=R \sin \frac{2 \pi t}{T},
$$

where $T$ is a constant.
(i) Show that the planet is subject to a force of constant magnitude, $F$ newtons.
(ii) It is known that the magnitude of the gravitational force pulling the planet towards the star is given by

$$
F=\frac{G M m}{R^{2}}
$$

where $G$ is a constant and $M$ is the mass of the star $S$ in kilograms. Find an expression for $T$ in terms of $R, M$ and $G$.

QUESTION 4. (Continued)
(c) An urn contains 3 red balls and $w$ white balls.

Sue draws two balls together from the urn. The probability that they have the same colour is $\frac{1}{2}$.

Bill adopts a different procedure. He draws one ball from the urn, notes its colour and replaces it. He then draws a second ball from the urn and notes its colour. The probability that both balls have the same colour is now $\frac{5}{8}$.

Find all possible values of $w$.

QUESTION 5. Use a SEPARATE Writing Booklet.
(a)


The diagram shows the circles $C:(x+a)^{2}+y^{2}=a^{2}+b^{2}$ and $\mathcal{D}:(x-a)^{2}+y^{2}=a^{2}+b^{2}$, which meet at the points $R(0, b)$ and $S(0,-b)$. The straight line $y=m x+b$ meets the circles at $P, Q$ and $R$, as shown in the diagram.
(i) Show that the $x$ coordinate of the point $P$ is $\frac{-2(a+m b)}{1+m^{2}}$.
(ii) Find the $x$ coordinate of the point $Q$.
(iii) Hence find the equation of the locus of the midpoint of $P Q$ as the slope of the straight line through $R$ varies. Describe this locus geometrically.

QUESTION 5. (Continued)
(b)


The diagram shows a sandstone solid with rectangular base $A B Q P$ of length $b$ metres and width $a$ metres. The end $P Q R S$ is a square, and the other end $A B C$ is an equilateral triangle. Both ends are perpendicular to the base.

Consider the slice of the solid with face $W X Y Z$ and thickness $\Delta x$ metres, as shown in the diagram. The slice is parallel to the ends and $A W=B X=x$ metres.
(i) Find the height of the equilateral triangle $A B C$.
(ii) Given that the triangles $C R S$ and $C Y Z$ are similar, find $Y Z$ in terms of $a$, $b$ and $x$.
(iii) Let the perpendicular height of the trapezium $W X Y Z$ be $h$ metres. Show that

$$
h=\frac{a}{2}\left[\sqrt{3}+(2-\sqrt{3}) \frac{x}{b}\right] .
$$

(iv) Hence show that the cross-sectional area of $W X Y Z$ is given by

$$
\frac{a^{2}}{4 b^{2}}[(2-\sqrt{3}) x+b \sqrt{3}](b+x)
$$

(v) Find the volume of the solid.

QUESTION 6. Use a SEPARATE Writing Booklet.
(a) Consider the following statements about a polynomial $Q(x)$.

2
(i) If $Q(x)$ is even, then $Q^{\prime}(x)$ is odd.
(ii) If $Q^{\prime}(x)$ is even, then $Q(x)$ is odd.

Indicate whether each of these statements is true or false. Give reasons for your answers.
(b) The probability that $n$ accidents occur at a given intersection during a year is

$$
P_{n}=e^{-2 \cdot 6} \frac{(2 \cdot 6)^{n}}{n!}, \quad n=0,1,2, \ldots
$$

(i) Find the probability that no accidents occur at the intersection in a given year. Give your answer correct to three decimal places.
(ii) What is the probability that, in a given ten-year period, there are at least 2 years in which no accidents occur at the intersection? Give your answer correct to three decimal places.
(iii) By considering values of $n$ for which $\frac{P_{n+1}}{P_{n}} \geq 1$, determine the most likely number of accidents in a given one-year period.

Question 6 continues on page 9

QUESTION 6. (Continued)
(c)


The point $S(a e, 0)$ is a focus of the hyperbola $\mathscr{H}: x^{2}-y^{2}=a^{2}$. The tangent to the hyperbola at a point $P\left(x_{1}, y_{1}\right)$ meets the asymptotes of $\mathcal{H}$ in $T$ and $U$, as shown in the diagram.
(i) Show that the equation of the tangent $T U$ is

$$
x_{1} x-y_{1} y=a^{2} .
$$

(ii) Show that the gradient of $S U$ is

$$
\frac{a}{e\left(x_{1}+y_{1}\right)-a} .
$$

(iii) Let $\angle U S T=\theta$. Show that $\tan \theta=-1$.

QUESTION 7. Use a SEPARATE Writing Booklet.
Marks
(a) Let $P(z)=z^{8}-\frac{5}{2} z^{4}+1$. The complex number $w$ is a root of $P(z)=0$.
(i) Show that iw and $\frac{1}{w}$ are also roots of $P(z)=0$.
(ii) Find one of the roots of $P(z)=0$ in exact form.
(iii) Hence find all the roots of $P(z)=0$.
(b) (i) Differentiate $\sin ^{-1}(u)-\sqrt{1-u^{2}}$.
(ii) Hence show that $\int_{0}^{\alpha}\left(\frac{1+u}{1-u}\right)^{\frac{1}{2}} d u=\sin ^{-1} \alpha+1-\sqrt{1-\alpha^{2}}$ for $0<\alpha<1$.
(c) A bead of mass $m$ slides along a wire in the shape of the curve

$$
y=\frac{3}{2} x^{\frac{2}{3}}, \quad \text { where } 0 \leq x \leq 1
$$

At time $t$, the bead is at $(x(t), y(t))$, and its velocity is $(\dot{x}(t), \dot{y}(t))$. The motion of the bead is governed by the equations

$$
\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} m \dot{y}^{2}+m g y=E
$$

where $E$ and $g$ are constants, and

$$
\dot{x}=x^{\frac{1}{3}} \dot{y} .
$$

When $t=0$, the bead is released from rest at the point $\left(1, \frac{3}{2}\right)$. It accelerates along the wire towards the origin, where it arrives at time $t_{1}$.
(i) Find $E$, and show that $\dot{y}^{2}=\frac{3 g(3-2 y)}{3+2 y}$.
(ii) Find $\dot{x}\left(t_{1}\right)$ and $\dot{y}\left(t_{1}\right)$.
(iii) Using the result of part (b), or otherwise, find the time it takes for the bead to travel from $\left(\frac{1}{8}, \frac{3}{8}\right)$ to the origin.

QUESTION 8. Use a SEPARATE Writing Booklet.
(a) The numbers $p, q$ and $s$ are fixed and positive. Also $p>1, q>1$ and

8 $p=\frac{q}{q-1}$.
(i) What positive value of $t$ minimises the expression

$$
f(t)=\frac{s^{p}}{p}+\frac{t^{q}}{q}-s t ?
$$

(ii) Show that for all $t>0$,

$$
\frac{s^{p}}{p}+\frac{t^{q}}{q} \geq s t
$$

(iii) Prove by induction that

$$
\left(x_{1} x_{2} \cdots x_{n}\right)^{\frac{1}{n}} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

for all $x_{1}, \ldots, x_{n}>0$.
(iv) Deduce that, for all $y_{1}, y_{2}, \ldots, y_{n}>0$,

$$
\frac{y_{1}}{y_{2}}+\frac{y_{2}}{y_{3}}+\cdots+\frac{y_{n-1}}{y_{n}}+\frac{y_{n}}{y_{1}} \geq n
$$

(b)

$A B C D E F$ is a cyclic hexagon.
(i) Show that $\angle D A B+\angle B C D=\angle A B C+\angle C D A$.
(ii) Show that $\angle F A D+\angle D E F=\angle E F A+\angle A D E$.
(iii) Deduce that $\angle A B C-\angle B C D+\angle C D E-\angle D E F+\angle E F A-\angle F A B=0$.
(iv) State and prove a similar result for a cyclic octagon.
(v) Formulate a similar result for a cyclic $n$-gon.

## STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

