

2009 HSC Chemistry Marking Guidelines

Section I

Question	Correct
	Response
1	С
2	С
3	D
4	С
5	А
6	D
7	В
8	А
9	С
10	В
11	D
12	А
13	В
14	В
15	A

Section I, Part B

Question 16 (a)

Outcomes assessed: H12

	Criteria	Marks
•	Identifies appropriate name of reactants (alkanol+alkanoic acid) and catalyst (concentrated sulfuric acid)	2
•	Provides either the features of method, including reflux, or draws diagram	3
•	Identifies ONE relevant safety precaution	
•	Gives any TWO of the above	2
•	Identifies any TWO of alkanoic acid, alkanol and sulfuric acid	
0	R	
•	Identifies method is reflux(ing)	
0	R	1
•	Identifies condenser is required	
0	R	
•	Identifies a relevant safety precaution	

Outcomes assessed: H2, H4, H13, H14

	Criteria	Marks
•	Identifies water and ethanol are polar molecules that form hydrogen bonds which can dissolve polar substances	
•	Identifies ethanol forms dispersion forces, therefore a good solvent for both polar and non-polar substances	4
•	Draws correct diagram showing hydrogen bonds for both molecules	
•	TWO of the above	3
•	Identifies both water and ethanol are polar molecules that form hydrogen bonds	
0	R	
•	States water dissolves polar substances, ethanol dissolves polar and non-polar	2
0	R	
•	Draws correct diagram for both molecules	
•	Identifies water or ethanol as a polar molecule	
0	R	
•	Identifies ethanol as a polar and non-polar molecule	1
0	R	
•	Draws correct diagram for one molecule	

Outcomes assessed: H4, H8, H6

	MARKING GUIDELINES		
	Criteria	Marks	
•	Provides sources of evidence of increase and reason for monitoring		
•	Provides sources of oxides of nitrogen		
•	Provides balanced relevant equations	4–5	
•	Describes TWO or more effects of oxide of nitrogen in the atmosphere		
•	Provides a clear judgement based upon the above criteria		
•	Describes TWO or more effects of oxide of nitrogen in the atmosphere		
А	ND EITHER		
•	Provides relevant equations		
0	R	2–3	
•	Provides sources of NO ₂ leading to ONE effect		
0	R		
•	Provides evidence for the increase		
•	Identifies ONE oxide of nitrogen, eg NO ₂		
0	R		
•	Identifies ONE effect, eg photochemical smog		
0	R		
•	Identifies the industrial revolution and more cars have led to increased combustion and more nitrogen oxides	1	
0	R		
•	Identifies a piece of evidence to support increase		
0	R		
•	ONE relevant equation		

Outcomes assessed: H9, H13, H14

	Criteria	Marks
•	Indicates all of the main chemical and physical processes from a raw material to a monomer to polymer to finished product from natural raw material	
•	Demonstrates a thorough knowledge of the chemistry involved using relevant chemical equations	5-6
•	Presents in a logical and coherent manner	
•	Indicates some of the main chemical and physical processes involved in the production of the finished product from natural raw material	2 4
•	Demonstrates knowledge of some of the chemistry involved using chemical equations	5-4
•	Indicates a feature in the manufacturing process of an identified product and provides an appropriate word equation	
0	R	
•	Indicates TWO features in the manufacturing process of identified product	
0	R	2
•	Provides ONE correct formula and ONE feature of the manufacturing process	
0	R	
•	Provides a structural formula for a monomer and corresponding polymer	
•	Indicates a feature in the manufacturing process of an identified product	
0	R	
•	Provides an appropriate word equation	1
0	R	
•	Provides an appropriate structural formula	

Question 20 (a)

Outcomes assessed: H12

	MARKING GUIDELINES		
	Criteria	Marks	
•	Correctly calculates the mass of ethanol burnt	3	
•	Correctly calculates q		
•	Correctly calculates the mass of ethanol WITHOUT consideration of heat loss not accounted for	2	
0	R		
•	Uses THREE correct steps with incorrect answer(s)		
•	Correctly calculates q with correct units		
0	R		
•	Incorrectly calculates mass and/or moles but demonstrates understanding of heat loss in calculation	1	
0	R		
•	Uses TWO correct steps with incorrect answers		

Question 20 (b)

Outcomes assessed: H11

	Criteria	Marks
•	States TWO appropriate ways to limit heat loss	1

Question 21 (a)

Outcomes assessed: H12, H14

MARKING GUIDELINES		
Criteria	Marks	
• Relates pH of equivalence point to the nature of each acid correctly	2	
Relates concentration to amount of base used	5	
One of the above for both acids		
OR	2	
States strong, less concentrated acid – Acid 1	2	
• States weak, more concentrated acid – Acid 2		
Identifies strength of one acid correctly		
OR		
Identifies relative concentration of one acid correctly		
OR	1	
Identifies equivalence point of either acid correctly		
OR		
States that Acid 2 uses more base than Acid 1		

Question 21 (b)

Outcomes assessed: H8, H10

MARKING GUIDELINES

	Criteria	Marks
•	Correctly identifies the alkaline salt by name or formula relative to part (a)	1

Question 21 (c)

Outcomes assessed: H12, H13

MARKING GUIDELINES

	Criteria	Marks
•	Correctly calculates hydrogen ion concentration with correct units	1

Question 21 (d)

Outcomes assessed: H10

	Criteria	Marks
•	Correctly relates colour change range for phenolphthalein to equivalence	1
	point or inflexion point on graph or vertical section of curve	1

Question 22 (a)

Outcomes assessed: H10, H13

MARKING GUIDELINES

	Criteria	Marks
•	Gives correctly balanced equations	2
•	Gives one correctly balanced equation	1

Question 22 (b)

Outcomes assessed: H10, H12, H13

MARKING GUIDELINES

	Criteria	Marks
•	Correctly calculates moles of HCl	1

Question 22 (c)

Outcomes assessed: H10, H12, H13

MARKING GUIDELINES

	Criteria	Marks
•	Correctly calculates moles of NH ₃	2
•	Correctly calculates total moles HCl	1

Question 22 (d)

Outcomes assessed: H12, H13, H14

	Criteria	Marks
•	Correctly calculates % of N to three significant figures	2
•	Correctly calculates mass of N using moles of NH ₃ in Part (c)	
0	R	
•	Correctly calculates %N to incorrect number of significant figures	1
0	R	
•	Correctly calculates % N with incorrect mass of N	

Outcomes assessed: H12, H14

|--|

	Criteria	Marks
•	Recognises and gives reasons for changes at 4 mins, 10 mins and 14 mins	5–6
•	Recognises and gives reasons for changes at two of three times	3–4
•	Recognises and gives reasons for changes at one of three times	2
•	Recognises changes at three times	
0	R	
•	Recognises horizontal lines indicate equilibrium has been achieved	1
0	R	
•	Gives a cause for one change	

Outcomes assessed: H3, H13

	Criteria	Marks
•	Demonstrates thorough knowledge and understanding of the principles of AAS and its environmental applications	4–5
•	Includes a relevant fully labelled diagram	
•	Demonstrates a sound knowledge and understanding of the principles of AAS and its environmental applications	3
•	Includes a relevant diagram	
•	Demonstrates a basic knowledge of the principles of AAS and its environmental applications	2
0	R	2
•	May include a basic diagram	
•	Demonstrates a limited knowledge of the principles of AAS OR its environmental applications	1
•	May include a basic diagram	

Question 25 (a)

Outcomes assessed: H12, H14

MARKING GUIDELINES

	Criteria	Marks
•	Correctly calculates means	2
•	Phosphate concentrations interpolated correctly	2
•	Correctly calculates means	
0	R	1
•	Interpolation of phosphate concentrations from original absorbance	

Question 25 (b)

Outcomes assessed: H14

MARKING GUIDELINES

	Criteria	Marks
•	States how THREE streams compare to recommended level	2
•	Provides TWO different sources and how these can be elevated	3
•	States how THREE streams compare to recommended level	2
•	Provides any TWO sources	2
•	States how THREE streams compare to recommended level	
0	R	
•	Provides any TWO sources	
0	R	1
•	Compares two streams and provides one source	
0	R	
•	Idenifies one source and cause of elevated P	

Question 25 (c)

Outcomes assessed: H4, H14

	MARKING GUIDELINES	
	Criteria	Marks
•	States that elevated N or P causes eutrophication	C
•	States an effect of N or P	2
•	States that elevated N or P causes eutrophication	
0	R	1
•	States an effect of N or P	

Question 26 (a)

Outcomes assessed: H10, H13

MARKING GUIDELINES

	Criteria	Marks
•	Gives correct oxidation and reduction half equations	2
•	Gives correct overall net ionic equation without half equations	2
•	Gives correct oxidation and reduction half equations	
0	PR	1
•	Gives correct overall net ionic equation without half equations	

Question 26 (b)

Outcomes assessed: H7, H12

MARKING GUIDELINES

	Criteria	Marks
•	Correctly calculates E^{\diamond}	1

Question 26 (c)

Outcomes assessed: H13

MARKING GUIDELINES

	Criteria	Marks
•	Correctly labels diagram	3
•	Correctly labels metals and ions with cathode and anode reversed	2
•	Correctly labels metals and ions without stating cathode and anode	1

Question 26 (d)

Outcomes assessed: H8, H11

	Criteria	Marks
•	Names an appropriate electrolyte	1

Section II

Question 27 (a) (i)

Outcomes assessed: H8

MARKING GUIDELINES		
	Criteria	Marks
	States correct use	1

Question 27 (a) (ii)

Outcomes assessed: H6, H8

MARKING GUIDELINES

	Criteria	Marks
•	Sketches in general terms extraction, roasting and contact processes	
•	Identifies catalyst and temperature requirement	3
•	Correctly writes TWO balanced equations or summarises chemical reactions in words	5
•	Sketches ANY TWO of extraction, roasting and contact process	
A	ND EITHER	
•	Identifies catalyst and temperature requirement	2
0	R	2
•	Writes a correctly balanced relevant equation or summarises one chemical reaction in words	
•	Outlines any process	
0	R	
•	Writes a relevant equation or summarises one chemical reaction in words	1
0	R	
•	Identifies the catalyst	

Question 27 (a) (iii)

Outcomes assessed: H4, H8

	Criteria	Marks
•	Identifies TWO properties of sulfuric acid	2
•	Explains how the danger is minimised for each property	2
•	As above for ONE property	1

Question 27 (b) (i)

Outcomes assessed: H12, H13

MARKING GUIDELINES

	Criteria	Marks
•	Correctly writes the equilibrium constant expression	1

Question 27 (b) (ii)

Outcomes assessed: H12

MARKING GUIDELINES

	Criteria	Marks
•	Correctly calculates K	3
•	Incorrectly calculates K with at least TWO correct steps	2
•	Identifies mole ratio	1

Question 27 (b) (iii)

Outcomes assessed: H7, H8, H14

MARKING GUIDELINES

	Criteria	Marks
•	Identifies effect on both K and products and/ or reactants	2
•	Identifies effect on either K or products/ reactants or pressure	1

Question 27 (c)

Outcomes assessed: H9

	Criteria	Marks
•	Identifies a property of a named emulsion	2
•	States ONE use related to properties	2
•	Identifies a property of a named emulsion	1

Question 27 (d) (i)

Outcomes assessed: H8, H9, H13

MARKING GUIDELINES

	Criteria	Marks
•	 Identifies soap as having hydrophobic (non-polar) tail and a hydrophilic polar head 	2
•	• Shows how an emulsion forms in terms of orientation of species involved	
•	• ONE of the above	1

Question 27 (d) (ii)

Outcomes assessed: H9, H10, H13

Criteria	Marks
Correctly draws the structure and names the product	2
Correctly names the product	
OR	1
Correctly draws the structure	

Question 27 (e)

Outcomes assessed: H1, H4, H12, H13, H14

	Criteria	Marks
•	Demonstrates thorough knowledge and understanding of the significance of each criteria used to find a suitable location for an industrial plant to produce sodium carbonate	
•	Refers to the flowchart	6–7
•	Supported by correct chemistry	
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates sound knowledge and understanding of the significance of each criteria to find a suitable location for an industrial plant to produce sodium carbonate	4–5
•	Refers to the flowchart	-
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic knowledge of the significance of the criteria used to find a suitable location for an industrial plant to produce sodium carbonate	23
•	Refers to the flowchart	2–3
•	Communicates ideas in a basic form using general scientific terms	
•	Demonstrates a limited knowledge of the criteria used to find a suitable location for an industrial plant to produce sodium carbonate	1
•	Communicates simple ideas	

Question 28 (a) (i)

Outcomes assessed: H6

	MARKING GUIDELINES	
	Criteria	Marks
•	States aluminum is used in drink cans in Australia	1

Question 28 (a) (ii)

Outcomes assessed: H6, H8

Criteria	Marks
• Shows similarities or differences between the use and effectiveness of the	
three cans	3
Relates use to coating	
• Clearly explains the use and effectiveness for one can	
OR	2
Outlines the use and effectiveness for three cans	
Identifies a coating used in tins	
OR	
States the coating acts as a barrier	
OR	1
States the barrier is only effective whilst intact	
OR	
Identifies tin as a less reactive metal than iron	

MARKING GUIDELINES

Question 28 (b)

Outcomes assessed: H4, H6, H8

	Criteria	Marks
•	States galvanised steel is zinc coated	
•	Identifies Zn as a passivating metal providing protective barrier	2
•	States that zinc can provide electrons to iron since it is more reactive	
•	States zinc is passivating metal	
0	R	
•	Zinc is more reactive than iron	1
0	R	
•	States galvanised steel is zinc coated	

Question 28 (c) (i)

Outcomes assessed: H10, H13

MARKING GUIDELINES

	Criteria	Marks
•	Shows the cause of rusting by correctly writing the equation for the reduction of water	2
•	Correctly writing the equation for the oxidation of iron	
•	Correctly writes ONE relevant equation	
0	R	1
•	States that iron is oxidised as the oxygen is reduced	

Question 28 (c) (ii)

Outcomes assessed: H8, H12, H13

	Criteria	Marks
•	Relates reactivity of the three metals Al, Fe and Cu to their electrode potentials	
•	States consequences of galvanic coupling in terms of corrosion for both types of guttering	4
•	Justifies the action taken	
•	Ranks the three metals in terms of reactivity	
•	States consequences of galvanic coupling in terms of corrosion for one type of guttering	3
•	Justifies the action taken	
•	TWO of below	2
•	Justifies the action taken	
0	R	
•	Ranks the three metals in terms of reactivity	
0	R	1
•	States that the more active metal will corrode when two different metals are paired	
0	R	
•	Gives standard electrode potentials for the three metals	

Question 28 (d) (i)

Outcomes assessed: H6, H8

MARKING GUIDELINES

	Criteria	Marks
•	Shows how the electrolytic process conserves this artefact by:	
	 Stating that electrolysis is used to remove (embedded) Cl⁻ Identifying artefact is cathode (and stainless steel is anode) Outlining chemistry of process 	3
•	TWO of the above	2
•	States Cl ⁻ is removed by electrolysis	
0	R	
•	Identifies artefact is cathode	1
0	R	
•	Outlines chemistry of process	

Question 28 (d) (ii)

Outcomes assessed: H6, H8, H13

Criteria	Marks
Draws a fully labelled diagram	2
Describes the process	5
Draws a fully labelled diagram	
OR	2
Describes the process	
Draws a diagram	
OR	
Identifies the cathode or anode	1
OR	
Outlines the process	

Question 28 (e)

Outcomes assessed: H1, H2, H3, H7, H8

	Criteria	Marks
•	Demonstrates thorough knowledge and understanding of how the work of each scientist has led to a better understanding of electron transfer reactions	
•	Refers to the flowchart	6–7
•	Supports by the use of an equation	
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates sound knowledge and understanding of how the work of each scientist has led to a better understanding of electron transfer reactions	4–5
•	Refers to the flowchart	-
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic knowledge of how the work of each scientist has led to a better understanding of electron transfer reactions	
•	Refers to the flowchart	2-3
•	Communicates ideas in a basic form using general scientific terms	
•	Demonstrates a limited knowledge of the work of the scientist(s) or an understanding of an electron transfer reactions	1
•	Communicates simple ideas	

Question 29 (a) (i)

Outcomes assessed: H9

MARKING GUIDELINES	
Criteria	Marks
Correctly identifies a factor	1

Question 29 (a) (ii)

Outcomes assessed: H6, H8, H9

MARKING GUIDELINES

	Criteria	Marks
•	Relates denaturation to disruption of the chemical bonding forces responsible for secondary and tertiary structures of proteins	2
•	Identifies the particular bonding forces disrupted	
•	Relates denaturation to disruption of the chemical bonding forces responsible for secondary and tertiary structures of proteins	
0)R	I
•	Identifies TWO bonding forces disrupted	

Question 29 (b)

Outcomes assessed: H9, H14

Criteria	Marks
• Identifies and related colour change to enzyme activity between pH 4.0– 7.0	
• Relates dark red at pH 6.0 –7.0 to extent of oxidation	3
• Concludes that experiment confirms enzymes act optimally within narrow pH ranges	
• TWO of the above	2
States most enzymes act optimally within narrow pH ranges	
OR	
Relates dark red to optimal pH for enzyme activity	1
OR	
Relates experimental colour change to enzyme activity	

Question 29 (c) (i)

Outcomes assessed: H9, H10, H12

	MARKING GUIDELINES	
	Criteria	Marks
•	Gives correctly balanced equation	2
•	Gives correct ΔH	Z
•	ONE of the above	1

Question 29 (c) (ii)

Outcomes assessed: H9, H12, H13

MARKING GUIDELINES

Criteria	Marks
Calculates correct answer	
OR	2
Correctly calculates answer from incorrect kJ	
Correct method with incorrect formula mass	
OR	
Gives correct formula mass	1
OR	
Calculates correct answer without correct units	

Question 29 (c) (iii)

Outcomes assessed: H12, H13

Criteria	Marks
Calculates correct answer	
OR	2
Calculates correct answer from incorrect kJ	
Uses correct steps with incorrect answer	
OR	
• Uses one step correctly	1
OR	
Calculates correct answer without correct units	

Question 29 (d) (i)

Outcomes assessed: H6, H9

	MARKING GUIDELINES		
	Criteria	Marks	
•	Describes structure of glycerol or gives diagram		
•	Relates solubility due to polar nature	3	
•	Relates viscosity due to H-bonds		
•	TWO of the above	2	
•	ONE of the above	1	

Question 29 (d) (ii)

Outcomes assessed: H6, H9

	Criteria	Marks
•	States fatty acids have a hydrophilic end from carboxylic group	
•	States fatty acids have a hydrophobic end from hydrocarbon group	
•	States long chain fatty acids are insoluble in water	3
•	Identifies triacylglycerols are esters with no O–H group, therefore non-polar not soluble in H_2O	
•	Identifies ONE property of both fatty acids and triacylglycerols related to solubility	2
•	Identifies ONE property of either fatty acids or triacylglycerols related to solubility	1

Question 29 (e)

Outcomes assessed: H3, H8, H9, H13, H14

	Criteria	Marks
•	Demonstrates thorough knowledge and understanding of the biochemical reactions involved in muscle cell respiration that have led to improved training programs	
•	Refers to flowchart	6–7
•	Includes relevant chemical equations	
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates sound knowledge and understanding of biochemical reactions involved in muscle cell respiration that have led to improved training programs	
•	Refers to flowchart	4–5
•	Includes relevant chemical equations	
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic knowledge of biochemical reactions involved in muscle cell respiration	
•	Refers to flowchart	2-3
•	Communicates ideas in a basic form using general scientific terms	
•	Demonstrates a limited knowledge of biochemical reactions involved in muscle cell respiration	1
•	Communicates simple ideas	

Question 30 (a) (i)

Outcomes assessed: H9

MARKING GUIDELINES		
	Criteria	Marks
•	Gives a correct ligand	1

Question 30 (a) (ii)

Outcomes assessed: H6, H9

MARKING GUIDELINES

Criteria	Marks
• Defines term 'polydentate'	2
Identifies donor atoms in EDTA	2
• ONE of the above	1

Question 30 (a) (iii)

Outcomes assessed: H8, H9

	Criteria	Marks
•	Identifies bonds as coordinate covalent bonds	
•	States that pairs of electrons come from the donor atoms	3
•	States that these electron pairs interact with d-orbitals of transition metals	
•	TWO of the above	2
•	ONE of the above	1

Question 30 (b) (i)

Outcomes assessed: H6

MARKING GUIDELINES	
Criteria	Marks
Gives correct maximum number of electrons	1

Question 30 (b) (ii)

Outcomes assessed: H6, H13

MARKING GUIDELINES

	Criteria	Marks
•	Gives all THREE electron configurations correctly	2
•	Gives correct electron configuration for excited Ca atom or Ca^+ ion	1

Question 30 (c)

Outcomes assessed: H6, H12

	Criteria	Marks
•	Provides explanation for increase in IE across a period	
•	Gives explanation on each of the drops from 2-3, 10-11, 18-19	
E	ITHER	2
•	Explains an irregularity within a period	3
0	R	
•	Explains the difference between 2^{nd} period (2–10) and 3^{rd} period (11–18)	
•	TWO of the above	2
•	ONE of the above	1

Question 30 (d) (i)

Outcomes assessed: H6

MARKING GUIDELINES

	Criteria	Marks
•	States that atoms can exist in an excited electronic state	
•	States that light is emitted at particular wavelengths as the electrons fall back to the ground state, to a lower energy level	
•	States these observations were the basis of Planck's Quantum Theory	3
•	States that particular wavelengths correspond to specific changes in energy levels which in turn correspond to particular colours of the spectrum	
•	TWO of the above	2
•	ONE of the above	1

Question 30 (d) (ii)

Outcomes assessed: H6, H11

	Criteria	Marks
•	Provides detailed explanation of appropriate method for analysis	2
•	Gives a reason why validity might be compromised	5
•	Outlines a valid method	2
•	Gives ONE reason why the validity might be compromised	2
•	Gives ONE valid method	
0	R	1
•	Gives ONE reason why the validity might be compromised	

Question 30 (e)

Outcomes assessed: H1, H6, H9, H13, H14

	Criteria		
•	Demonstrates thorough knowledge and understanding of the use of pigments (with atomic number in the range of 22–30) and the origin of the colour at the atomic level	67	
•	Refers to the flowchart	0-7	
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas		
•	Demonstrates sound knowledge and understanding of the use of pigments (with atomic number in the range of 22–30) and the origin of the colour at the atomic level	4–5	
•	Refers to the flowchart		
•	Communicates some scientific principles and ideas in a clear manner		
•	Demonstrates a basic knowledge of the use of pigments and the origin of the pigment colour	2.2	
•	Refers to the flowchart	2-3	
•	Communicates ideas in a basic form using general scientific terms		
•	Demonstrates a limited knowledge of the use of pigments or the origin of the pigment colour	1	
•	Communicates simple ideas		

Question 31 (a) (i)

Outcomes assessed: H6, H9, H12

MARKING GUIDELINES		
Criteria	Marks	
Correctly names bond	1	

Question 31 (a) (ii)

Outcomes assessed: H6, H9

Criteria			
•	Identifies differences between 1°, 2°, 3° structures clearly	3	
•	Identifies differences between TWO levels of structure		
OR		2	
•	Identifies 1° structure and indicates possible 2°, 3° structures being higher level of complexity overlaid	2	
•	Identifies ONE level of structure	1	

Question 31 (a) (iii)

Outcomes assessed: H8, H9

	Criteria			
•	Outlines electrophoresis principle			
•	States proteins in samples are subject to electrophoresis to allow comparison between known and unknown proteins	2		
•	Outlines principle			
0	PR	1		
•	States that proteins can be compared via electrophoresis			

Question 31 (b) (i)

Outcomes assessed: H12

MARKING GUIDELINES			
Criteria	Marks		
Identifies the ship responsible for spill	1		

Question 31 (b) (ii)

Outcomes assessed: H6

MARKING GUIDELINES

	Criteria				
•	States each peak represents a separate component				
•	Identifies that the signal intensity is proportional to the amount of component	2			
•	States each peak represents a separate component				
0	R	1			
•	Identifies that the signal intensity is proportional to the amount of component	1			

Question 31 (c)

Outcomes assessed: H3, H6

	Marks	
•	Provides features of THREE components of either GLC or HPLC systems that allow for smaller sample analysis	3
•	Provides features of TWO components of either GLC or HPLC systems that allow for smaller sample analysis	2
•	Provides features of ONE component of either GLC or HPLC system that allows for smaller sample analysis	1

Question 31 (d) (i)

Outcomes assessed: H9, H11

MARKING GUIDELINES

	Criteria			
Clearly details procedures in a logical order		2		
•	Compares chromatogram for identification	3		
•	Clearly outlines method and comparison of chromatogram for identification	2		
	Clearly details procedures in a logical order			
•	Outlines method	1		

Question 31 (d) (ii)

Outcomes assessed: H8, H9

Criteria		
•	Provides features of the tests which conclusively identify each of 3 species unambiguously	3
•	Outlines more than ONE test unambiguously	
OR		2
•	Outlines tests which confirm each of the 3 species	
•	Outlines a test	1

Question 31 (e)

Outcomes assessed: H3, H9, H14

	Criteria			
•	Demonstrates thorough knowledge and understanding of the processes forensic scientists follow from sample collection to presenting results			
•	Refers to flowchart	6–7		
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas			
•	Demonstrates sound knowledge and understanding of the processes forensic scientists follow from sample collection to presenting results	1.5		
•	Refers to flowchart	4–5		
•	Communicates some scientific principles and ideas in a clear manner			
•	Demonstrates a basic knowledge of the processes forensic scientists follow			
•	Refers to the flowchart	2–3		
•	Communicates ideas in a basic form using general scientific terms			
•	Demonstrates a limited knowledge of some of the processes forensic scientists follow	1		
•	Communicates simple ideas			

Chemistry 2009 HSC Examination Mapping Grid

Question	Marks	Content	Syllabus outcomes
Section I Part A	L		
1	1	9.2.5.2.1	Нб
2	1	9.3.2.2.1, 9.3.2.2.5	Н8
3	1	9.3.1.2.1	Н8
4	1	9.4.3.3.1	Нб
5	1	9.2.3.3.6, 11.2a	H11
6	1	9.2.1.3.2	Н9
7	1	9.3.4.2.3, 9.3.4.2.5, 13.1d	H12, H13
8	1	9.4.3.3.1, 9.4.3.2.1, 11.3a	H8, H11
9	1	9.2.4.2.3, 12.3c, 12.4b	H6, H10, H12, H14
10	1	9.3.5.2.4, 9.2.1.3.1	Н9
11	1	9.4.5.2.3, 9.4.5.3.3, 12.3c	H8, H12
12	1	9.4.4.2.9	Н9, Н13
13	1	9.2.3.2.6, 9.2.3.3.5, 12.4b	H9, H10, H12
14	1	9.3.4.3.3, 12.4b	H10, H12
15	1	9.4.5.2.1, 9.3.2.2.9, 12.4b	H10, H12
Section I Part B			
16	3	9.3.5.3.1, 9.3.5.2.4, 9.3.5.2.5, 9.3.5.2.6. 12.1a–d	H12
17	4	9.2.3.2.3, 13.1e, 14.1g,h	H2, H4, H13, H14
18	5	9.3.2.2.6, 9.3.2.2.7, 9.3.2.2.8, 9.3.2.2.10, 9.3.2.3.2, 9.4.1.2.3, 9.4.4.2.2	H4, H6, H8
19	6	9.2.1, 13.1d, 14.3b	H9, H13, H14
20 (a)	3	9.2.3.2.7, 9.2.3.3.6, 12.4b	H12
20 (b)	1	9.2.3.3.6, 11.2c,d,e, 11.3a	H11
21 (a)	3	9.3.4.3.3, 9.3.3.2.4, 12.3c, 14.1a-f	H12, H14
21 (b)	1	9.3.4.2.4, 9.3.4.3.3, 9.3.3.3.4	H8, H10
21 (c)	1	9.3.3.3.7, 12.3c, 12.4b, 13.1d	H12, H13
21 (d)	1	9.3.1.2.2, 9.3.1.3.2	H10
22 (a)	2	9.2.1.2.1, 9.3.4.3.3, 13.1d	H10, H13
22 (b)	1	9.3.4.3.3, 12.4b, 13.1d	H10, H12, H13
22 (c)	2	9.3.4.3.3, 12.4b, 13.1d	H10, H12, H13
22 (d)	2	9.4.3.1, 9.4.3.3.3, 12.4b, 13.1d, 14.1h	H12, H13, H14
23	6	9.3.2.2.3, 9.3.2.2.4, 9.4.2.1, 12.3c, 14.1a-h	H12, H14
24	5	9.4.3.2.2, 9.4.3.3.5, 9.4.5.3.2, 13.1e	H3, H13
25 (a)	2	9.4.3.3.1, 9.4.3.2.1, 12.3c	H12

Question	Marks	Content	Syllabus outcomes	
25 (b)	3	9.4.5.2.2, 9.4.5.3.3, 14.1g	H14	
25 (c)	2	9.4.5.2.1, 9.4.5.2.2, 9.4.3.3.2, 14.3d	H4, H14	
26 (a)	2	9.2.4.2.1, 9.2.4.3.3, 13.1d	H10, H13	
26 (b)	1	9.2.4.3.4, 12.4b	H7, H12	
26 (c)	3	9.2.4.2.5, 9.2.4.2.6, 13.1e	H13	
26 (d)	1	9.2.4.2.6, 9.4.3.3.1, 11.3a	H8, H11	
Section II Question 27 Industrial Chemistry				
(a) (i)	1	9.5.3.2.1	H8	
(a) (ii)	3	9.5.3.2.2, 9.5.3.2.3, 9.5.3.3.1	H6, H8	
(a) (iii)	2	9.5.3.3.3	H4, H8	
(b) (i)	1	9.5.2.2.2, 12.4b, 13.1a	H12, H13	
(b) (ii)	3	9.5.2.3.3, 12.4b	H12	
(b) (iii)	2	9.5.2.2.1, 9.5.2.2.3, 14.3d	H7, H8, H14	
(c)	2	9.5.5.3.3	Н9	
(d) (i)	2	9.5.5.2.3, 9.5.5.2.4, 13.1e	H8, H9, H13	
(d) (ii)	2	9.5.5.2.1, 13.1d	H9, H10, H13	
(e)	7	9.5.6.2.1, 9.5.6.2.3, 9.5.6.2.4, 9.5.6.2.2, 9.5.6.3.3, 12.3c, 13.1d, 14.3b	H1, H4, H12, H13, H14	
Section II				

Question 28 Shipwrecks, Corrosion and Conservation

(a) (i)	1	9.6.2.2.1	Нб
(a) (ii)	3	9.6.4.3.3	Н6, Н8
(b)	2	9.6.4.2.3/4, 9.6.4.3.3/4	H4, H6, H8
(c) (i)	2	9.6.2.2.4, 9.6.4.3.2, 13.1d	H10, H13
(c) (ii)	4	9.6.4.2.2, 12.4b, 13.1d	H8, H12, H13
(d) (i)	3	9.6.3.2.1, 9.6.7.2.1/3/4, 9.6.7.3.1	Н6, Н8
(d) (ii)	3	9.6.3.2.1/2, 13.1e	H6, H8, H13
(e)	7	9.6.1.2.2/3/4, 9.6.1.3.1, 14.3b	H1, H2, H3, H7, H8, H14

Section II Question 29 The Biochemistry of movement

(a) (i)	1	9.7.4.2.6, 9.7.4.3.2	Н9
(a) (ii)	2	9.7.4.2.5, 9.7.4.2.6	Н6, Н8, Н9
(b)	3	9.7.4.3.2, 9.7.4.3.3, 14.1c	H9, H14
(c) (i)	2	9.7.7.9.7.8, 9.7.9, 9.7.7.1, 9.7.8.1, 9.7.8.3.1, 12.3c, 12.4b	H9, H10, H12
(c) (ii)	2	12.3c, 12.4b, 13.1d	H9, H12, H13
(c) (iii)	2	12.3c, 12.4b, 13.1d	H12, H13
(d) (i)	3	9.7.3.3.2	Н6, Н9
(d) (ii)	3	9.7.3.2.1, 9.7.3.3.1, 9.7.3.2.2, 9.7.3.2.5	Н6, Н9
(e)	7	9.7.2.2.2/3, 9.7.2.3.1, 9.7.5.1, 9.7.10.1, 13.1d, 14.3b	H3, H8, H9, H13, H14

2009 HSC Chemistry Mapping Grid

BOARD OF STUDIES

Question	Marks	Content	Syllabus outcomes		
Section II Question 30 The Chemistry of Art					
(a) (i)	1	9.8.5.2.5	Н9		
(a) (ii)	2	9.8.5.2.4, 9.8.5.2.6	Н6, Н9		
(a) (iii)	3	9.8.5.2.3, 9.8.5.3.1, 9.8.5.2.6	H8, H9		
(b) (i)	1	9.8.3.2.1, 9.8.3.2.2	H6		
(b) (ii)	2	9.8.3.2.4, 9.8.3.2.5, 13.1b	H6, H13		
(c)	3	9.8.3.2.6, 9.8.3.2.8, 9.8.3.3.1, 12.3c	H6, H12		
(d) (i)	3	9.8.2.2.3	Нб		
(d) (ii)	3	9.8.2.3.1, 11.2c	H6, H11		
(e)	7	9.8.1.1, 9.8.4.2.3, 9.8.4.2.4, 9.8.5.1, 13.1d, 14.3b	H1, H6, H9, H13, H14		
Section II Question 31 Forensic Chemistry					
(a) (i)	1	9.9.3.2.4, 12.3c	H6, H9, H12		
(a) (ii)	3	9.9.3.2.1, 9.9.3.3.1	Н6, Н9		
(a) (iii)	2	9.9.3.2.5, 9.9.3.2.6	H8, H9		
(b) (i)	1	9.9.5.2.1, 9.9.5.2.2, 12.3c	H12		
(b) (ii)	2	9.9.5.2.2	Нб		
(c)	3	9.9.5.2.2	H3, H6		
(d) (i)	3	9.9.3.3.4, 11.2c	H9, H11		
(d) (ii)	3	9.9.1.2.3, 9.9.1.3.3	H8, H9		
(e)	7	9.9.1.2.1, 9.9.2.1, 9.9.3.1, 9.9.4.1, 9.9.5.1, 14.3b	H3, H9, H14		