

2009 HSC Mathematics Extension 1 Marking Guidelines

Question 1 (a)

Outcomes assessed: P3

MARKING GUIDELINES

	Criteria	Marks
•	Correct answer	2
•	One of the two factors correct, or equivalent progress	1

Question 1 (b)

Outcomes assessed: P5, H3

MARKING GUIDELINES Criteria Marks • Correct answer 1

Question 1 (c)

Outcomes assessed: H5, H9

Criteria	Marks
Correct answer	1

Question 1 (d)

Outcomes assessed: PE3

	MARKING GUIDELINES	
	Criteria	Marks
•	Correct solution	3
•	Makes significant progress	2
•	Recognises an appropriate method	1

Question 1 (e)

Outcomes assessed: PE5, H5

MARKING GUIDELINES

	Criteria	Marks
•	Correct solution	2
•	Shows an understanding of the product rule or the chain rule	1

Question 1 (f)

Outcomes assessed: HE6

	Criteria	Marks
•	Correct answer	3
•	Makes the correct substitution including correct limits, or equivalent merit	2
•	Attempts the given substitution, or equivalent merit	1

Question 2 (a)

Outcomes assessed: PE3

MARKING GUIDELINES

	Criteria	Marks
•	Correct solution	3
•	Obtains correct equations for a and b, or equivalent progress	2
•	Shows some understanding of the remainder theorem	1

Question 2 (b) (i)

Outcomes assessed: HE3

MARKING GUIDELINES

	Criteria	Marks
•	Correct answer	2
•	Correctly obtains A or α , or equivalent progress	1

Question 2 (b) (ii)

Outcomes assessed: HE3

	Criteria	Marks
•	Correct solution	2
•	Obtains a correct result for $x + \alpha$	1

Question 2 (c) (i)

Outcomes assessed: PE4

MARKING GUIDELINES

	Criteria	Marks
•	Correct solution	2
•	Uses the equation of the parabola to show that the gradient at P is t (or equivalent progress)	1

Question 2 (c) (ii)

Outcomes assessed: PE3

MARKING GUIDELINES

	Criteria	Marks
•	Correct solution	2
•	Attempts to solve simultaneously the equations for tangents at P and Q	1

Question 2 (c) (iii)

Outcomes assessed: PE3

	Criteria	Marks
•	Correct answer	1

Question 3 (a) (i)

Outcomes assessed: P5, H3

MARKING GUIDELINES		
	Criteria	Marks
	Correct answer	1

Question 3 (a) (ii)

Outcomes assessed: HE4

MARKING GUIDELINES Criteria Marks • Correct inverse function

2

1

• Makes significant progress

Question 3 (b) (i)

Outcomes assessed: H5, H9

MARKING GUIDELINES

	Criteria	Marks
	• Graphs showing important features, including 3 points of intersection	2
I	Graphs showing some important features	1

Question 3 (b) (ii)

Outcomes assessed: H5, H9

	Criteria	Marks
•	Correct answer (from part (i))	1

Question 3 (b) (iii)

Outcomes assessed: HE3

MARKING GUIDELINES

	Criteria	Marks
•	Correct solution	3
•	Computes appropriate derivative and shows some understanding of Newton's method	2
•	Computes appropriate derivative, or equivalent merit	1

Question 3 (c) (i)

Outcomes assessed: PE6

MARKING GUIDELINESCriteriaMarks• Correct proof2• Makes significant progress1

Question 3 (c) (ii)

Outcomes assessed: H5, HE7

	Criteria	Marks
•	Correct answer	1

Question 4 (a) (i)

Outcomes assessed: HE3

MARKING GUIDELINES

	Criteria	Marks
•	Correct answer	2
•	Correct binomial coefficient, or equivalent merit	1

Question 4 (a) (ii)

Outcomes assessed: HE3

MARKING GUIDELINES

	Criteria	Marks
•	Correct answer	2
•	Attempts to add appropriate probabilities, or equivalent merit	1

Question 4 (a) (iii)

Outcomes assessed: HE3

	Criteria	Marks
•	Correct answer	1

Question 4 (b) (i)

Outcomes assessed: P5, PE2

MARKING GUIDELINES	
Criteria	Marks
Correct solution	1

Question 4 (b) (ii)

Outcomes assessed: H5, HE3

MARKING GUIDELINES	
Criteria	Marks
Correct answer	1

Question 4 (b) (iii)

Outcomes assessed: H6, HE4

MARKING GUIDELINES

	Criteria	Marks
•	Correct solution	3
•	Correct equation i.e. $6x^5 - 12x^3 - 18x = 0$	2
•	Attempts to solve $f'(x) = 0$, or equivalent merit	1

Question 4 (b) (iv)

Outcomes assessed: H5, HE7

	Criteria	Marks
•	Correct graph showing evenness, asymptote and stationary points	2
•	Graph showing some important features	1

Question 5 (a) (i)

Outcomes assessed: HE3, HE5

	MARKING GUIDELINES	
	Criteria	Marks
•	Correct solution	3
•	Makes significant progress	2
•	Any statement equivalent to $\frac{d\left(\frac{1}{2}v^2\right)}{dx} = -nx^2$, or equivalent merit	1

Question 5 (a) (ii)

Outcomes assessed: HE3, HE5

MARKING GUIDELINES

	Criteria	Marks
•	Correct answer	1

Question 5 (a) (iii)

Outcomes assessed: HE3, HE5

MARKING GUIDELINES		
	Criteria	Marks
•	Correct answer	1

Question 5 (a) (iv)

Outcomes assessed: HE3, HE5, HE7

	Criteria	Marks
•	Correct solution	2
•	Correct formula for <i>x</i> , or correct value for <i>t</i> from an incorrect formula	1

Question 5 (b) (i)

Outcomes assessed: P4, PE3, PE6

MARKING GUIDELINES	
Criteria	Marks
Correct solution	1

Question 5 (b) (ii)

Outcomes assessed: HE4, HE7

MARKING GUIDELINES

Criteria	Marks
Correct solution	1

Question 5 (b) (iii)

Outcomes assessed: HE4, HE7

MARKING GUIDELINES

	Criteria	Marks
•	Correct solution	2
•	Some understanding of related rates, or equivalent merit	1

Question 5 (b) (iv)

Outcomes assessed: HE4, HE7

Criteria	Marks
Correct answer	1

Question 6 (a) (i)

Outcomes assessed: HE3, HE7

MARKING GUIDELINES	
Criteria	Marks
Correct solution	1

Question 6 (a) (ii)

Outcomes assessed: HE3, HE7

MARKING GUIDELINES

Criteria	Marks
• Correctly shows that $y_1 = y_2$ at time T	2
• Attempts to show that $y_1 = y_2$ at time <i>T</i> , or equivalent merit	1

Question 6 (a) (iii)

Outcomes assessed: HE3, HE7

MARKING GUIDELINES

Criteria	Marks
Correct solution	1

Question 6 (b) (i)

Outcomes assessed: H5, HE2, HE3

	Criteria	Marks
•	Correct solution	3
•	Makes significant progress	2
•	Correctly sums the geometric series, or equivalent merit	1

Question 6 (b) (ii) (1)

Outcomes assessed: HE3

MARKING GUIDELINES		
	Criteria	Marks
	Correct explanation	1

Question 6 (b) (ii) (2)

Outcomes assessed: HE3

MARKING GUIDELINES

	Criteria	Marks
•	• Correct explanation	1

Question 6 (b) (iii)

Outcomes assessed: HE3, HE7

	Criteria			
•	Correct solution	3		
•	Uses the result in part (i) to make substantial progress	2		
•	Writes S_n in a form allowing use of the result in part (i), or equivalent	1		
	merit	1		

Question 7 (a) (i)

Outcomes assessed: P7

MARKING GUIDELINES		
Criteria	Marks	
Correct solution	1	

Question 7 (a) (ii)

Outcomes assessed: HE2

MARKING GUIDELINES

	Criteria	Marks	
•	Correct solution	2	
•	Establishes the inductive step, or equivalent merit	1	

Question 7 (b) (i)

Outcomes assessed: PE6, HE3, HE7

MARKING GUIDELINES

	Criteria	Marks
•	Correct solution	2
•	Attempts to use the identity to find θ	1

Question 7 (b) (ii)

Outcomes assessed: H5, HE4, HE7

	Marks	
•	Correct solution	3
•	Demonstrates understanding of the chain rule for differentiation and attempts to solve $\frac{d\theta}{dx} = 0$	2
•	Demonstrates understanding of the chain rule for differentiation	1

Question 7 (c) (i)

Outcomes assessed: P4, PE2, PE3

MARKING GUIDELINES

Criteria	Marks
Correct solution	3
• Any two of the observations below, or equivalent merit	2
• Observes that $\phi = \theta + \angle SRP$	
OR	
• Observes that ϕ remains constant as <i>P</i> moves	
OR	1
• Observes that $\phi = \theta$ when $P = T$	
OR	
Equivalent merit	

Question 7 (c) (ii)

Outcomes assessed: PE3

	Criteria	
•	Correct solution, showing evidence of using the correct circle property	1

Mathematics Extension 1 2009 HSC Examination Mapping Grid

Question	Marks	Content	Syllabus outcomes
1 (a)	2	1.3	P3
1 (b)	1	4.1, 12.3	Р5, Н3
1 (c)	1	13.4	Н5, Н9
1 (d)	3	1.4	PE3
1 (e)	2	8.8, 13.5	PE5, H5
1 (f)	3	11.5	HE6
2 (a)	3	16.2	PE3
2 (b) (i)	2	5.9, 13.1	НЕЗ
2 (b) (ii)	2	5.9, 13.3	HE3
2 (c) (i)	2	9.6	PE4
2 (c) (ii)	2	9.6	PE3
2 (c) (iii)	1	9.6	PE3
3 (a) (i)	1	4.1, 12.3	Р5, Н3
3 (a) (ii)	2	15.1	HE4
3 (b) (i)	2	13.3	Н5, Н9
3 (b) (ii)	1	13.3	Н5, Н9
3 (b) (iii)	3	16.4	HE3
3 (c) (i)	2	5.7	PE6
3 (c) (ii)	1	13.1	H5, HE7
4 (a) (i)	2	3.3, 18.2	HE3
4 (a) (ii)	2	18.2	HE3
4 (a) (iii)	1	18.2	HE3
4 (b) (i)	1	4.2	P5, PE2
4 (b) (ii)	1	10.5	Н5, НЕ3
4 (b) (iii)	3	10.2	H6, HE4
4 (b) (iv)	2	10.5	Н5, НЕ7
5 (a) (i)	3	14.4	НЕЗ, НЕ5

2009 HSC	Mathematics Extension 1	Mapping Grid
----------	-------------------------	--------------

Question	Marks	Content	Syllabus outcomes
5 (a) (ii)	1	14.4	НЕ3, НЕ5
5 (a) (iii)	1	14.4	HE3, HE5
5 (a) (iv)	2	14.4	HE3, HE5, HE7
5 (b) (i)	1	5.1, 5.5	P4, PE3, PE6
5 (b) (ii)	1	14.2	HE4, HE7
5 (b) (iii)	2	14.2	HE4, HE7
5 (b) (iv)	1	14.2	HE4, HE7
6 (a) (i)	1	14.3	HE3, HE7
6 (a) (ii)	2	14.3	НЕ3, НЕ7
6 (a) (iii)	1	14.3	НЕ3, НЕ7
6 (b) (i)	3	7.3, 17.3	H5, HE2, HE3
6 (b) (ii) (1)	1	18.1	HE3
6 (b) (ii) (2)	1	18.1	HE3
6 (b) (iii)	3	18.1	HE3, HE7
7 (a) (i)	1	8.8	Р7
7 (a) (ii)	2	7.4, 8.8	HE2
7 (b) (i)	2	5.7, 15.2	PE6, HE3, HE7
7 (b) (ii)	3	10.6, 15.5	H5, HE4, HE7
7 (c) (i)	3	2.3, 2.10	P4, PE2, PE3
7 (c) (ii)	1	2.10	PE3