

2010 HSC Chemistry Marking Guidelines

Section I, Part A

Question	Answer
1	В
2	D
3	D
4	В
5	D
6	D
7	А
8	А
9	А
10	A C
11	С
12	А
13	D
14	А
15	В
16	С
17	C C
18	С
19	В
20	В

Section I, Part B

Question 21

Criteria	Marks
• Identifies HCl as a strong acid which fully ionises in aqueous solution	
• Identifies ethanoic acid as a weak acid which does not fully ionise in aqueous solution	3
• Identifies that the total concentration of ethanoic acid must be higher than that of HCl to give an equivalent $[H^+]$ and therefore pH, as $pH = -log_{10}$ $[H^+]$	5
Identifies HCl as a strong acid or fully ionised	
• Identifies CH ₃ COOH acid as a weak acid or partially ionised	2
 Identifies that CH₃COOH concentration needs to be higher than HCl to give equivalent [H⁺] and therefore pH 	
• H ⁺ concentration from HCl is equal to H ⁺ from CH ₃ COOH	
OR	1
 Identifies HCl as a strong acid or is fully ionised and identifies CH₃COOH as a weak acid or is partially ionised 	I

Question 22 (a)

Criteria	Marks
• Gives a valid use of esters	1

Question 22 (b)

Criteria	Marks
Gives valid reasons for refluxing the mixture	2
Gives a valid reason for refluxing the mixture	1

Question 22 (c)

Criteria	Marks
Draws correct structural formulae and correctly names both molecules	3
• Draws correct structural formulae for both molecules and correctly names ONE	
OR	2
• Draws correct structural formula for ONE molecule and correctly names both	
Gives correct names for both molecules	
OR	1
Draws correct structural formula for ONE	

Question 23 (a)

Criteria	Marks
Gives correctly balanced equation	1

Question 23 (b)

Criteria	Marks
• Calculates kJ mol ⁻¹ values correctly for each fuel or kJ g ⁻¹ for 1-butanol	2
Gives correct reason for identifying correct fuel	2
• Identifies correct fuel with all calculations shown but no reason	
OR	
• Identifies correct fuel with correct reasons but incorrect calculations	1
OR	
Identifies incorrect fuel but has correct calculations	

Question 24 (a)

Criteria	Marks
Gives balanced chemical equation and identifies type of reaction	2
Gives balanced chemical equation	
OR	1
Identifies type of reaction	

Question 24 (b)

Criteria	Marks
• States that bromine water decolourises in the presence of ethene	2
• States that on adding bromine water sample should turn brown	2
• Identifies bromine water can be used to detect ethene	
OR	1
States colour change occurs in presence of ethene with bromine	

Question 25

Criteria	Marks
• Demonstrates thorough knowledge and understanding of the relationship between DO and BOD and the importance of monitoring	
• Describes what DO and BOD are and how they are related	
Gives reasons for monitoring both	5
Outlines effect of BOD on water quality	
• Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
• Demonstrates sound knowledge and understanding of the relationship between DO and BOD and the importance of monitoring	
• Outlines DO and BOD with link between the two	
Gives reasons for monitoring both	4
• Outlines effect of BOD on water quality	
• Communicates some scientific principles and ideas in a clear manner	
Demonstrates a basic knowledge and understanding of DO and BOD	
• Outlines DO and BOD – link between two	2
• Outlines that BOD is a measure of water quality	3
• Communicates some scientific principles and ideas in a clear manner	
Defines DO or BOD	
States importance of DO or BOD	2
Relates BOD or DO to water quality	2
• Communicates ideas in a basic form using general scientific terms	
Defines DO or BOD	
OR	1
• Relates level of DO or BOD to water quality	1
Communicates simple ideas	

Question 26

Criteria	Marks
• Gives correctly balanced equation with correct states of matter	4
Calculates volume of gas produced	4
Gives correctly balanced equation	
• Calculates correct moles of H ₂ produced	
OR	
• Calculates volume of $H_2(g)$ with correctly balanced equation, using correct mole ratio	3
OR	
• Provides correct equation without recognising the limiting reagent	
• Gives correctly balanced equation and correct number of moles of either reactant	
OR	
Gives correct number of both reactants	
OR	2
• Gives correct number of moles of either and correct volume calculation	
OR	
• Gives incorrect equation and moles but gives volume, mole ratio and limiting reagent	
Writes correct balanced equation	
OR	1
Calculates moles of either reactant	

Question 27

Criteria	Marks
Correctly identifies all THREE components	2
Correctly identifies anode and cathode	
OR	1
• Correctly identifies electrolyte and identifies anode and cathode but in reverse	1

Question 28

Criteria	Marks
• Demonstrates a thorough understanding of all THREE steps by describing features of steps with appropriate reference to techniques and equipment used	7–8
• Determines concentration of HCl correctly with correct equation	
• Demonstrates a sound understanding of all THREE steps by outlining features of steps with appropriate reference to some techniques and equipment used	5–6
Provides ONE correct calculation and correct equation	
• Demonstrates a limited understanding of all THREE steps. Refers to some techniques and equipment used	3–4
• Calculates moles or mass of Na ₂ CO ₃ or correct equation	
• Demonstrates a basic understanding of some steps or refers to some techniques or equipment used	
OR	
• Calculates formula mass of Na ₂ CO ₃ or titrated moles or mass of Na ₂ CO ₃ with some outline of procedure	2
OR	
Calculates correct concentration of HCI	
OR	
• Provides correct equation and refers to some techniques or equipment used	

Question 29 (a)

Criteria	Marks
Lists at least TWO assumptions correctly	2
• Explains validity of experiment in terms of correct outcomes for both	3
Lists at least TWO correct assumptions	
• Explains validity of ONE, or outlines validity for both	2
OR	2
Lists at least THREE assumptions, no assessment	
Lists ONE or TWO correct assumptions	1

Question 29 (b)

Criteria	Marks
• Gives correctly balanced (must have $BaSO_4(s)$) equation	
Correctly calculates mass of barium sulfate	3
• Recognises moles of SO_4^{2-} = moles of $BaSO_4$	
• Calculates mass of barium sulfate (with equation) but makes 1 error	
OR	2
Calculates mass of barium sulfate correctly without equation	
Writes correct equation	
OR	1
Correctly calculates mass of sulfate	

Question 30 (a)

Criteria	Marks
Identifies both types of polymerisation correctly	
Describes each process	3
Writes TWO correct equations	
Identifies both types of polymerisation AND either	
Gives TWO correct equations	2
OR	2
Describes ONE process with correct equation	
Identifies both types of polymerisation correctly	
OR	
Outlines main features of each process	
OR	1
Gives ONE correct equation	
OR	
Names and outlines process for ONE monomer	

Question 30 (b)

Criteria	Marks
• Identifies THREE polymers and relates properties of each to structure and	
uses	5
Demonstrates coherence and logical progression of ideas	
• Identifies THREE polymers and relates properties of TWO to structure and uses	4
Demonstrates coherence and logical progression of ideas	
Identifies THREE polymers and relates uses	
Relates structure and property of ONE	
OR	3
• Identifies TWO polymers and relates properties of each to structure and	
use	
Identifies THREE polymers	
OR	
Identifies TWO polymers and related uses	2
OR	
• Identifies ONE polymer and relates structure to properties and uses	
Identifies TWO polymers	
OR	1
Identifies ONE polymer and related use	

Question 31 (a) (i)

Criteria	Marks
Calculates correct percentage of TDS to 2 sig. fig	2
Calculates correct mass of TDS	
OR	1
%TDS to incorrect significant figures	

Question 31 (a) (ii)

Criteria	Marks
• Gives a correct chemical test for Cl ⁻ and a balanced chemical equation	2
• Identifies a way to detect Cl ⁻ in a water sample	
OR	1
• Gives an equation for the detection of Cl ⁻	

Question 31 (b)

Criteria	Marks
• Correctly identifies a source and effect of a named ion that pollutes waterways	2
Identifies a source of a named ion contamination	
OR	1
• Identifies an effect of a named ion being present in waterways	

Section II

Question 32 – Industrial Chemistry

Question 32 (a)

Criteria	Marks
• Identifies type of cell and sketches in general terms the process used to extract NaOH	3
Identifies the cell AND ONE aspect of process	
OR	2
• Sketches in general terms the process used to extract NaOH	
• Identifies the type of cell	
OR	1
Identifies a step in the process of extracting NaOH	

Question 32 (b)

Criteria	Marks
• Thoroughly compares the electrolysis of molten and aqueous sodium chloride and includes relevant half and full equations	5
• Demonstrates coherence and logical progression of ideas and includes correct use of scientific principles and ideas	5
• Presents more than one comparison with half equations and overall reaction for one cell	
OR	4
• Provides all half equations and full reactions for both types of electrolysis with only one stated comparison	
• Presents only ONE comparison with half equations and overall reaction for one cell	
OR	
• Provides all half equations and full reactions for both types of electrolysis	3
OR	
• Thoroughly compares the electrolysis of molten and aqueous sodium chloride with no equations	
 Provides ONE comparison between the electrolysis of molten and liquid NaCl and ¹/₂ equations for ONE electrolysis 	
OR	
• Provides all half equations and full reaction for ONE type of electrolysis	
OR	2
• Provides ONE comparison between the electrolysis of molten and aqueous NaCl and ONE full reaction	2
OR	
• Soundly compares the electrolysis of molten and aqueous sodium chloride with no equation	
States ONE feature of either electrolysis	
OR	1
• Writes ONE overall reaction for either electrolysis or TWO ¹ / ₂ equations	

Question 32 (c) (i)

Criteria	Marks
• Provides correct equation constant expression and value with evidence of working out	3
• Provides the correct equilibrium constant expression and concentration for two of SO ₂ and SO ₃ or O ₂	
OR	
• Provides correct chemical equilibrium reaction and equilibrium constant expression	
OR	2
• Provides correct chemical equilibrium reaction and concentration for two of SO_2 and SO_3 or O_2	
OR	
• Provides correct equilibrium constant expression and moles for SO_2 , SO_3 and O_2	
Provides the correct equilibrium constant expression	
OR	
Provides correct chemical equilibrium reaction	
OR	1
• Provides correct concentration for any two of SO ₂ and SO ₃ or O ₂	
OR	
• Provides correct moles for all of SO ₂ and SO ₃ or O ₂	

Question 32 (c) (ii)

Criteria	Marks
• States the condition responsible for the change with an appropriate justification	2
• Identifies that temperature was a factor in changing equilibrium	1

Question 32 (d) (i)

Criteria	Marks
Identifies type of reaction and reactant A	2
Identifies type of reaction	
OR	1
Identifies reactant A	

Question 32 (d) (ii)

Criteria	Marks
• Demonstrates a thorough knowledge of how saponification could be carried out in a school laboratory AND identifies at least TWO safety precautions for this activity	3
• Demonstrates a sound knowledge of how saponification could be carried out in a school laboratory	2
• Identifies at least ONE safety precaution for this activity	
 Demonstrates a limited knowledge of how saponification could be carried out in a school laboratory OR 	1
• Identifies at least ONE safety precaution for this activity	

Question 32 (e)

Criteria	Marks
• Demonstrates thorough knowledge and understanding of the importance of the use of limestone and the resulting environmental impact	
Provides relevant equations	6–7
Provides a judgement on importance and environmental impact	0-7
• Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
• Demonstrates sound knowledge and understanding of the importance of the use of limestone and the resulting environmental impact	4.5
Provides a relevant equation	4–5
Communicates some scientific principles and ideas in a clear manner	
• Demonstrates basic knowledge of the importance of the use of limestone and its environmental impact	2–3
Communicates ideas in a basic form using general scientific terms	
• Demonstrates a limited knowledge of the importance of the use of limestone and its environmental impact	1
Communicates simple ideas	

Question 33 – Shipwrecks, Corrosion and Conservation

Question 33 (a)

Criteria	Marks
• Demonstrates a sound knowledge and understanding of the effect the marine environment has on materials	3
• Demonstrates a sound knowledge and understanding of the effect the marine environment has on ONE material	2
• Demonstrates limited knowledge of the effect of the marine environment on TWO materials	
OR	1
• Demonstrates basic knowledge of the effect of the marine environment on ONE material	

Question 33 (b) (i)

Criteria	Marks
Draws fully labelled diagram	
Provides both relevant half equations	4
Provides overall reaction equation	
Draws labelled diagram with some errors	
Provides relevant half equation and full overall equation	
OR	3
Draws fully labelled diagram	
Provides a relevant half equation	
Draws a diagram with some correct labels	
Writes ONE correct half equation	
OR	2
• Writes both relevant half equations and overall equations, no diagram	2
OR	
• Draws a fully labelled diagram – no equations	
Draws a diagram with some correct labels	
OR	1
Writes ONE correct half equation	

Question 33 (b) (ii)

	Criteria	Marks
• Cle	early indicates how the cathode would be identified	1

Question 33 (c)

Criteria	Marks
• Provides a thorough explanation of the properties and related uses of the steels based on the carbon content AND/OR the presence of other elements	5
• Communicates ideas using scientific principles in a logical manner with the reference to the information in the table	
• Provides a sound explanation of the properties and related uses of the steels based on the carbon content AND/OR the presence of other elements	4
• Communicates ideas using scientific principles with reference to the information in the table	
• Provides a sound understanding of the properties and uses of steels	3
• Demonstrates a basic knowledge of the properties and uses of some steels	2
Demonstrates a limited knowledge of the properties OR uses of steels	1

Question 33 (d) (i)

Criteria	Marks
• Provides features of a test which identifies the THREE factors and describes appropriate methods to assess their effect on the rate of corrosion	4
• Demonstrates coherence and logical progression and includes use of scientific principles and ideas	
Provides features of a test which identifies THREE factors	
Describes relevant tests for TWO factors	3
• Communicates some scientific principles and ideas in a clear manner	
• Outlines a test for ONE factor, linking the test to the factor	
Communicates simple ideas	2
OR	2
• Provides features of a test which identifies THREE factors	
• Demonstrates a limited knowledge of factors and tests associated with corrosion of iron	
OR	1
Communicates simple ideas	

Question 33 (d) (ii)

Criteria	Marks
Lists ONE environmental relevant method of protection	1

Question 33 (e)

Criteria	Marks
• Demonstrates thorough knowledge and understanding of restoration and conservation techniques for the TWO materials	
Compares process for the TWO materials	
Uses equations to describe restoration of copper or wood	6–7
• Provides a judgement on suitability of techniques	
• Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
• Demonstrates sound knowledge and understanding of restoration and preservation of the TWO materials	
• Provides a judgement on suitability of techniques	4–5
• Communicates scientific principles clearly and uses an equation when discussing copper or wood restoration	
• Demonstrates basic knowledge and understanding of restoration and preservation of the TWO materials	
Communicates in basic form using general scientific principles	
OR	2–3
• Demonstrates a sound knowledge and understanding for ONE material	
Communicates in basic form using general scientific principles	
 Demonstrates a limited knowledge of EITHER restoration OR preservation for ONE of the materials 	1
Communicates simple ideas	

Question 34 (a)

Criteria	Marks
Correctly names molecule	
Relates ADP to ATP	3
States importance in energy transfer and storage	
Correctly names molecule	
Relates ADP to ATP	2
OR	2
States importance in energy transfer and storage	
Correctly names molecule	
OR	
Links molecule to energy transfer or storage	1
OR	
Relates ADP to ATP	

Question 34 (b) (i)

Criteria	Marks
States that oxidation of glucose is a multistep process	2
• States that small amounts of energy are produced at each step	2
• ONE of the above	1

Question 34 (b) (ii)

Criteria	Marks
• Identifies lactic acid as the cause of change in pH	
Recognises pH is lowered	3
Gives a correctly balanced equation	
Identifies lactic acid as the cause of change	
AND EITHER	
Recognises pH is lowered	2
OR	
Gives a correctly balanced equation	
• Identifies lactic acid as the cause of change in pH	
OR	
Recognises pH is lowered	1
OR	
Gives a correctly balanced equation	

Question 34 (c)

Criteria	Marks
• Demonstrates a thorough knowledge of the chemical bonding that determines the secondary and tertiary structures of a protein	4–5
States side chains determine 3-dimensional structure	
Outlines THREE of the types of forces	3
Refers to structure	
Outlines TWO types of the forces with reference to structures	
OR	
• Outlines THREE types of forces – no reference to structures	2
OR	
Lists FOUR forces – no reference to structures	
Lists TWO of the forces	
OR	1
Outlines ONE force	

Question 34 (d)

Criteria	Marks
Identifies THREE stages of aerobic respiration	
States correct ATP output at each stage	5
Identifies TWO intermediates	5
Constructs a logical and sequential flowchart	
Identifies THREE stages of aerobic respiration	
Identifies TWO intermediates	4
States overall ATP but not at each stage	4
Constructs a logical and sequential flowchart	
Identifies THREE stages of aerobic respiration	
States overall ATP production	3
Constructs a simplified flowchart	
Identifies TWO stages of aerobic respiration	
OR	
States ATP production and identifies ONE stage	2
OR	
Constructs a simplified flowchart	
Identifies ONE stage	
OR	
States overall ATP production	1
OR	
Constructs simple flowchart	

Question 34 (e)

Criteria	Marks
• Demonstrates a thorough knowledge and understanding of skeletal muscles and how this has influenced training regimes	
Justifies use of specific training regimes	6–7
• Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
• Demonstrates a sound knowledge and understanding of skeletal muscles – includes both Type 1 and Type 2 cells	4.5
States use of specific training regimes	4–5
Communicates some scientific principles and ideas in a clear manner	
• Demonstrates a basic knowledge of skeletal muscles – Type 1 and Type 2 cells	2–3
Communicates ideas in basic form using general scientific terms	
Demonstrates a limited knowledge of skeletal muscles	1
Communicates simple ideas	1

Question 35 (a)

Criteria	Marks
• Identifies the element	3
Provides a valid justification for the choice	5
• Identifies the element and the trend across a period	
OR	
• Identifies an element with the highest electronegativity in its period but not period 3 and trend across a period	2
OR	
• Gives a valid explanation for the trend in electronegativity across a period but incorrectly identifies the most-electronegative element	
Identifies the element correctly	
OR	
• Correctly identifies the trend across a period in the periodic table	1
OR	
Defines electronegativity	

Question 35 (b) (i)

Criteria	Marks
Identifies correct ligand type	1

Question 35 (b) (ii)

Criteria	Marks
States colours correctly	
• Identifies the number of valence electrons correctly and relates it to energy levels	4
• Valid explanation of the presence or lack of colour for the two complex ions	
States colours correctly	
AND EITHER	
• Identifies the number of valence electrons correctly	3
OR	5
• Gives a valid explanation of the presence or lack of colour for the two complex ions	
States colours correctly	
• Gives a limited explanation of the presence or lack of colours	2
OR	2
• Explains the basis of colour	
States the colour for ONE complex ion	
OR	
Number of valence electrons for ONE	1
OR	
Identifies reasons for colour	

Question 35 (c) (i)

Criteria	Marks
Draws correct reflectance spectrum	2
Identifies pigment colour	2
Draws resulting reflectance spectrum	
OR	1
Identifies pigment colour	

Question 35 (c) (ii)

Criteria	Marks
Outlines IR radiation	
Outlines method of use and target compounds/pigments	3
• Outlines advantages and disadvantages of the method of analysis	
Outlines method of use and target compounds/pigments AND	
EITHER	
• Outlines advantages and disadvantages of the method of analysis	2
OR	
Outlines IR radiation	
Identifies TWO or more pigments/compounds detected by IR	
OR	
• Outlines the method of analysis with advantages and risks	1
OR	
• Outlines the advantage or disadvantage of the method of analysis	

Question 35 (d)

Criteria	Marks
 Provides a thorough discussion of the Bohr model by: Describing the Bohr model of the atom Applying the Bohr model to explain phenomena of emission spectra Stating a merit of the Bohr model was that it predicted spectrum for hydrogen Referring to spectra of other elements to demonstrate at least two limitations Demonstrates coherence and logical progression of ideas using scientific 	4–5
 principles Provides a thorough discussion of the Bohr model by: Outlining the Bohr model of the atom Applying the model to explain the phenomena of emission spectra Stating a merit of the Bohr model Referring to spectra of other elements to demonstrate a limitation 	2-3
 Outlines the Bohr model of the atom OR Applies the Bohr model to explain the phenomena of emission spectra OR States a merit of the Bohr model OR Refers to spectra of other elements to demonstrate a limitation of the model 	1

Question 35 (e)

Criteria	Marks
• Demonstrates thorough knowledge and understanding of potential health risks associated with cosmetics used by ancient cultures	
• Provides a judgement on use of these cosmetics over time	6–7
• Demonstrates coherence and logical progression and includes TWO pigments, with chemical formulae and names	
• Demonstrates sound knowledge and understanding of potential health risks associated with cosmetics used by ancient cultures	1.5
Identifies ONE pigment with chemical formula and name	4–5
Communicates some scientific principles and ideas in a clear manner	
• Demonstrates a basic knowledge of potential health risks of cosmetics of ancient cultures	
Identifies ONE pigment with its use and risk	2–3
• Communicates ideas in a basic form using general scientific terms	
• Demonstrates a limited knowledge of the potential health risks of cosmetics of ancient cultures	
OR	1
Identifies ONE pigment	
Communicates simple ideas	

Question 36 (a)

Criteria	Marks
Identifies A and B	
• Sketches in general terms the difference in structure	3
• Identifies the origin of A and B	
TWO of:	
• Identifies A and B	2
• Sketches in general terms the difference in structure of named A and B	2
Identifies the origin of named A and B	
• Identifies A and B	
OR	
• Sketches in general terms the difference in structure of named A and B	1
OR	
• Identifies the origin of named A and B	

Question 36 (b) (i)

Criteria	Marks
• Identifies that the amino acids move because of an electrical potential difference	2
• Identifies factors that cause the separation of amino acids	
• Identifies that the amino acids move because of an electrical potential difference	
OR	1
Identifies factors that cause the separation of amino acids	

Question 36 (b) (ii)

Criteria		
 Identifies each amino acid correctly with an appropriate reason Clearly indicates that the top of the tray is positive (or the bottom is negative) 	3	
• Gives a correct identification and appropriate reason for two amino acids	2	
 Gives a correct identification and appropriate reason for one amino acid OR Identifies all three amino acids 	1	

Question 36 (c) (i)

Criteria	Marks
• Identifies the manufacturer of the pottery	1

Question 36 (c) (ii)

Criteria	Marks
• Demonstrates thorough knowledge and understanding of emission spectra	4
Demonstrates sound knowledge and understanding of emission spectra	3
Demonstrates a basic knowledge of emission spectra	2
Demonstrates a limited knowledge of emission spectra	1

Question 36 (d) (i)

Criteria	Marks
Names FOUR appropriate properties	2
Names TWO appropriate properties	1

Question 36 (d) (ii)

Criteria	Marks
Names an appropriate organic and an inorganic test	2
Gives description of both tests	5
Names an appropriate organic and an inorganic test	2
Gives a description of ONE test	2
Names an appropriate organic and an inorganic test	
OR	1
Gives a description of ONE test	

Question 36 (e)

Criteria	Marks
• Demonstrates thorough knowledge and understanding of both the polymerase chain reaction and DNA electrophoresis and their application in forensic analysis	
Provides a range of uses for DNA analysis	6–7
• Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
• Demonstrates sound knowledge and understanding of the process used to analyse DNA	4–5
Provides some uses for DNA analysis	
Communicates some scientific principles and ideas in a clear manner	
Demonstrates basic knowledge of DNA analysis	
Provides a use for DNA analysis	2–3
Communicates ideas in a basic form using general scientific terms	2 0
Demonstrates a limited knowledge of some of the processes of DNA analysis	
OR	1
• The use that this analysis can be put to	
Communicates simple ideas	

Chemistry 2010 HSC Examination Mapping Grid

			11 C
Question	Marks	Content	Syllabus outcomes
Section I Part A			
1	1	9.2.2.2.3	Н9
2	1	9.2.5.2.2	Нб
3	1	9.3.1.2.2	H8
4	1	9.4.4.2.9	Н9
5	1	9.4.5.3.2, 9.4.5.2.1	H8
6	1	9.2.1.2.7	Н9
7	1	9.3.3.2.2, 9.3.3.2.6	H10
8	1	9.3.4.2.1	H2
9	1	9.4.2.2.2	H8
10	1	9.4.3.3.1, 9.4.5.2.1, 9.4.3.2.1, 14.1d	H8, H14
11	1	9.2.3.2.1, 9.2.3.2.9	Н9
12	1	9.2.4.2.3, 12.4b	H10, H12
13	1	9.2.4.2.4, 9.2.4.2.6	Н8
14	1	14.1a	H9, H14
15	1	9.2.3.3.4, 9.2.3.3.5, 14.1d	H12, H10
16	1	9.4.4.2.5, 13.1e	Нб
17	1	12.4b, 14.1a	H12
18	1	9.3.2.2.4	H8
19	1	9.3.2.2.9, 12.4b	H10, H12
20	1	12.3c, 12.4b, 14.1a, 14.1f	H10, H12, H14
Section I Part B	1		
21	3	9.3.3.2.3, 9.3.3.2.4, 9.3.3.2.6, 9.3.3.2.7, 14.1g	H8, H14
22 (a)	1	9.3.5.3.2	Н9
22 (b)	2	9.3.5.2.6, 9.3.5.3.1	H8, H9
22 (c)	3	9.3.5.2.2, 13.1e	H9, H10, H13
23 (a)	1	9.2.3.3.6	H9, H10
23 (b)	2	9.2.3.3.6, 12.4b	H9, H10, H12
24 (a)	2	9.2.1.2.3	H10, H9
24 (b)	2	9.2.1.3.2	Н9
25	5	9.4.5.2.1, 14.3b	H4, H8, H14
26	4	9.2.1.3.1, 9.3.2.2.9, 12.4b	H8, H10, H12
27	2	9.2.4.2.4, 9.2.4.2.6	H8, H10
28	8	9.3.4.2.8, 9.3.4.3.3, 12.4b, 11.3a	H8, H10, H11, H12
29 (a)	3	9.4.3.3.3, 11.2e, 12.4a	H8, H10, H11, H12
29 (b)	3	9.4.3.3.3, 12.4b	H8, H10, H12

Question	Marks	Content	Syllabus outcomes
30 (a)	3	9.2.1.2.5, 9.2.1.2.6, 14.1f, 9.2.2.2.3, 9.2.2.2.2, 9.2.2.2.4, 14.3d	H9, H10, H14
30 (b)	5	9.2.1.2.8, 9.2.2.4, 9.2.2.2.5, 14.3d	H4, H9, H14
31 (a) (i)	2	9.4.5.2.1, 12.4d	H12
31 (a) (ii)	2	9.4.3.3.1, 11.2c	H8, H10, H11
31 (b)	2	9.4.3.3.2	H4
Section II Question 32	— Indust	rial Chemistry	
32 (a)	3	9.5.4.2.2, 9.5.4.2.3, 12.3c	H7, H8, H12
32 (b)	5	9.5.4.3.1, 9.5.4.3.2, 14.3b	H13, H7, H14
32 (c) (i)	3	9.5.2.2.2, 9.5.2.3.3, 12.3c	H12, H13
32 (c) (ii)	2	9.5.2.2.1, 9.5.2.2.3, 12.3c, 14.1d	H12, H14
32 (d) (i)	2	9.5.5.2.1, 12.3c	H9, H10, H12
32 (d) (ii)	3	9.5.5.2.1, 9.5.5.2.2, 9.5.5.3.1, 12.1d	H11, H12
32 (e)	7	9.5.6.2.1, 9.5.6.2.3, 9.5.6.2.4, 14.3b, 13.1d	H4, H13, H14
Section II Question 33	— Shipw	recks, Corrosion and Conservation	
33 (a)	3	9.6.7.2.1, 9.6.2.2.4, 14.1d	H8, H14
33 (b) (i)	4	9.6.3.2.1, 9.6.3.2.2, 13.1d	H7, H8, H10, H13
33 (b) (ii)	1	9.6.3.2.1, 14.1d	H7, H14
33 (c)	5	9.6.2.2.3, 9.6.2.3.3, 14.1c, 12.3c	H8, H12, H14
33 (d) (i)	4	9.6.5.2.1, 9.6.5.3.1, 11.3a, 12.2b	H4, H6, H7, H8, H11, H12
33 (d) (ii)	1	9.6.4.2.1, 14.2a	H4, H14
33 (e)	7	9.6.7.2.3, 9.6.7.2.4, 9.6.7.2.5, 13.1d 14.1g, 14.2a, 14.3b	H3, H13, H8, H14
Section II Question 34	— The B	iochemistry of movement	
34 (a)	3	9.7.1.2.3, 9.7.1.3.1, 14.1f	H7, H14
34 (b) (i)	2	9.7.8.2.2, 9.7.8.2.5, 9.7.8.3.2, 9.7.8.2.3, 14.1g	H7, H8, H14
34 (b) (ii)	3	9.7.10.2.2, 13.1 d, 14.1a	H9, H10, H12, H13
34 (c)	5	9.7.4.2.1, 9.7.4.2.2, 9.7.4.2.5, 14.1f	H9, H14
34 (d)	5	9.7.8.3.1, 13.1e	H7, H9, H10, H13
34 (e)	7	9.7.10.2.1, 9.7.8, 9.7.10, 14.3b	H1, H3, H7, H14
Section II Question 35	— The C	hemistry of Art	
35 (a)	3	9.8.3.2.7, 14.1a	H6, H14
35 (b) (i)	1	9.8.5.2.5, 114.1f	H14
35 (b) (ii)	4	9.8.4.2.4, 14.1d	H14
35 (c) (i)	2	9.8.2.2.4, 12.3c, 13.1f	H12, H13
35 (c) (ii)	3	9.8.2.2.8, 9.8.2.3.3, 14.2d	H14
35 (d)	5	9.8.2.3.4, 9.8.2.2.3, 9.8.2.2.5, 14.1c	H1, H2, H6, H14
35 (e)	7	9.8.1.3.2, 9.8.1.2.3, 14.1b	H1, H4, H14

2010 HSC Chemistry Mapping Grid

Question	Marks	Content	Syllabus outcomes	
Section II Question 36	Section II Question 36 — Forensic Chemistry			
36 (a)	3	9.2.2.2.2, 9.9.2.2.4, 9.9.2.3.2, 13.1e	H9, H13	
36 (b) (i)	2	9.9.3.2.2, 9.9.3.2.6, 9.9.3.2.3, 9.9.3.3.5, 11.2c	H8, H9, H11	
36 (b) (ii)	3	9.9.3.2.2, 9.9.3.2.6, 9.9.3.2.3, 9.9.3.3.5, 13.1e	H8, H9, H13	
36 (c) (i)	1	9.9.6.2.2, 9.9.6.2.5, 9.9.6.2.3, 9.9.6.3.2, 14.1a	H7, H14	
36 (c) (ii)	4	9.9.6.2.1, 9.9.6.2.3, 9.9.6.2.2, 9.9.6.2.4, 14.1f	H7, H14	
36 (d) (i)	2	9.9.1.2.4, 9.9.1.3.3, 11.2c, 12.1a	H8, H12	
36 (d) (ii)	3	9.9.1.1.1, 9.9.1.3.3, 9.9.1.2.4, 11.2c, 12.2a	H4, H8, H11, H12	
36 (e)	7	9.9.4.2.2, 9.9.4.3.1, 9.9.4.2.3, 14.3b	H4, H9, H14	