

2012 HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Centre Number and Student Number at the top of pages 9, 11, 13, 17, 19 and 23

Total marks - 100

Section I Pages 2–25

75 marks

This section has two parts, Part A and Part B

Part A - 20 marks

- Attempt Questions 1–20
- Allow about 35 minutes for this part

Part B – 55 marks

- Attempt Questions 21–33
- Allow about 1 hour and 40 minutes for this part

Section II Pages 27–38

25 marks

- Attempt ONE question from Questions 34–38
- Allow about 45 minutes for this section

Section I

75 marks

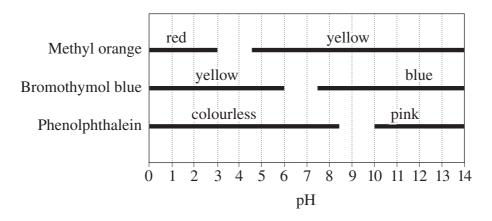
Part A – 20 marks Attempt Questions 1–20 Allow about 35 minutes for this part

Use the multiple-choice answer sheet for Questions 1–20.

- 1 Which of the following is a measure of the clarity of water?
 - (A) Hardness
 - (B) Turbidity
 - (C) Total dissolved solids
 - (D) Biochemical oxygen demand

 $\begin{array}{|c|c|c|c|c|} \hline \mathbf{C}_2\mathbf{H}_4 & \rightarrow & \mathbf{X} & \rightarrow & \mathbf{polymer} \\ \hline \end{array}$

Which of the following compounds is represented by X in the flowchart?


- (A) Cellulose
- (B) Ethanol
- (C) Glucose
- (D) Styrene
- 3 What effect does a catalyst have on a reaction?
 - (A) It increases the rate.
 - (B) It increases the yield.
 - (C) It increases the heat of reaction.
 - (D) It increases the activation energy.
- 4 Which pieces of glassware should be used when preparing a primary standard solution?
 - (A) Pipette, burette and conical flask
 - (B) Dropper, watch glass and pipette
 - (C) Beaker, filter funnel and volumetric flask
 - (D) Measuring cylinder, stirring rod and conical flask

- 5 Which of the following is a balanced equation representing the fermentation of glucose?
 - (A) $C_6H_{12}O_6(aq) \rightarrow 2C_3H_6O_3(aq)$
 - (B) $C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$
 - (C) $C_6H_{12}O_6(aq) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$
 - (D) $C_6H_{12}O_6(aq) + 3O_2(g) \rightarrow C_2H_5OH(aq) + 4CO_2(g) + 3H_2O(l)$
- **6** Cobalt-60 is produced according to the equation:

$$^{59}_{27}\text{Co} + ^{1}_{0}\text{n} \rightarrow ^{60}_{27}\text{Co}$$

Where would a commercial quantity of cobalt-60 be produced?

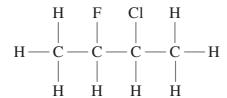
- (A) Cyclotron
- (B) Scintillator
- (C) Nuclear reactor
- (D) Particle accelerator
- Methyl orange, bromothymol blue and phenolphthalein indicators were mixed together to form a solution.

Over what pH range would the solution be yellow?

- (A) 0-14
- (B) 3-4.5
- (C) 3-7.5
- (D) 4.5 6

- **8** Which acid / base pair could act as a buffer?
 - (A) H_3O^+/H_2O
 - $(B) \quad H_2O \, \big/ \, OH^-$
 - (C) HNO_3/NO_3^-
 - (D) $H_2PO_4^{-}/HPO_4^{2-}$
- **9** Which of the following contains a coordinate covalent bond?
 - (A) NH₃
 - (B) NH₄⁺
 - (C) H_2O
 - (D) OH-
- 10 Samples of a solution of barium nitrate were independently tested with chloride ions, with sulfate ions and also for flame colour.

Which row of the following table would represent the results?


	Chloride	Sulfate	Flame test
(A)	No precipitate	No precipitate	Red
(B)	No precipitate	Precipitate	Green
(C)	Precipitate	Precipitate	Green
(D)	Precipitate	No precipitate	Red

11 The pH of $0.1 \text{ mol } L^{-1}$ solutions of acetic, citric and hydrochloric acids was measured.

Which solution has the highest pH?

- (A) Citric acid
- (B) Acetic acid
- (C) Hydrochloric acid
- (D) The pH of the three solutions is the same.

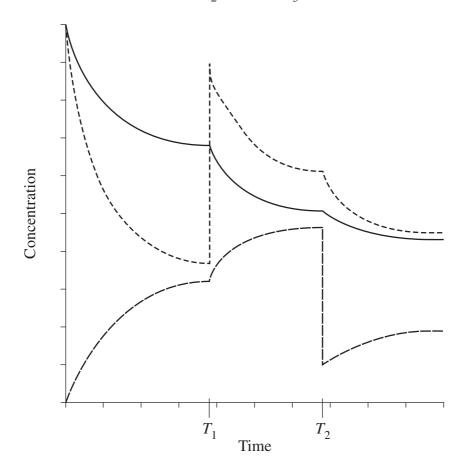
12 What is the correct IUPAC name for the following compound?

- (A) 2-chloro-2-fluorobutane
- (B) 2-fluoro-3-chlorobutane
- (C) 3-fluoro-2-chlorobutane
- (D) 3-chloro-2-fluorobutane

Use the information provided to answer Questions 13 and 14.

This equation represents a common redox reaction.

$$\operatorname{Cr_2O_7}^{2-}(aq) + 14\operatorname{H}^+(aq) + 6\operatorname{Fe}^{2+}(aq) \rightarrow 2\operatorname{Cr}^{3+}(aq) + 6\operatorname{Fe}^{3+}(aq) + 7\operatorname{H}_2\operatorname{O}(l)$$


- What is the oxidising agent in the reaction?
 - (A) H⁺
 - (B) Cr³⁺
 - (C) Fe²⁺
 - (D) Cr₂O₇²⁻
- 14 What is the value of E_{cell}^{\bullet} for the reaction?
 - (A) 0.59 V
 - (B) 0.92 V
 - (C) 1.90 V
 - (D) 2.13 V

15 In which row of the following table are the listed oxides correctly classified?

	Acidic	Basic	Neutral	Amphoteric
(A)	CO_2	Na ₂ O	SO ₃	Al ₂ O ₃
(B)	Na ₂ O	CO_2	H ₂ O	Al ₂ O ₃
(C)	CO_2	MgO	H ₂ O	ZnO
(D)	SO_2	K ₂ O	СО	CO ₂

16 The graph shows the concentrations over time for the system:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

What has happened at times T_1 and T_2 ?

	T_1	T_2
(A)	H ₂ added	CH ₃ OH removed
(B)	CO added	CH ₃ OH removed
(C)	H ₂ added	CO removed
(D)	CO added	CO and H ₂ removed

17 The heat of combustion of propan-1-ol is 2021 kJ mol⁻¹. Combustion takes place according to the equation:

$$2 {\rm C_3H_7OH}(l) \ + \ 9 {\rm O_2}(g) \ \to \ 6 {\rm CO_2}(g) \ + \ 8 {\rm H_2O}(l)$$

What mass of water is formed when 1530 kJ of energy is released?

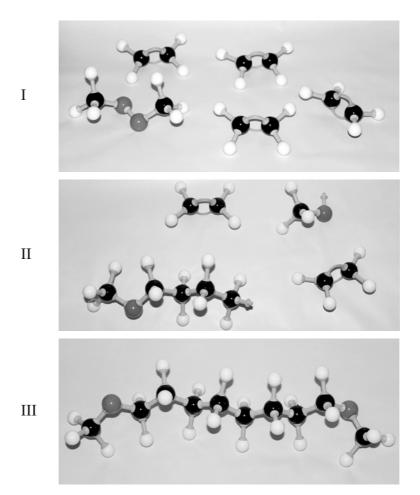
- (A) 3.4 g
- (B) 14 g
- (C) 55 g
- (D) 144 g
- Which of the following changes take place when 50 mL of water is added to 50 mL of 0.1 mol L⁻¹ acetic acid?

	pН	Degree of ionisation
(A)	Increase	Decrease
(B)	Decrease	Increase
(C)	Increase	Increase
(D)	Decrease	Decrease

- What mass of anhydrous sodium carbonate is required to neutralise $100.0\,\mathrm{mL}$ of $0.500\,\mathrm{mol}\;\mathrm{L}^{-1}$ acetic acid?
 - (A) 2.65 g
 - (B) 5.30 g
 - (C) 10.6 g
 - (D) 53.0 g
- All the lead ions present in a 50.0 mL solution were precipitated by reaction with excess chloride ions. The mass of the dried precipitate was 0.595 g.

What was the concentration of lead in the original solution?

- (A) 8.87 g L^{-1}
- (B) 10.2 g L^{-1}
- (C) 11.9 g L^{-1}
- (D) 16.0 g L^{-1}


BLANK PAGE

2012 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry										
Section I (continued)				С	entre	Nuı	nber			
Part B – 55 marks Attempt Questions 21–33 Allow about 1 hour and 40 minutes for this part				Stu	ıden	Nu1	mber			
	wer the questions in the spaces provided. These th of response.	spac	es pr	ovid	e gui	danc	e foi	the	expe	ected
Shov	v all relevant working in questions involving ca	lculat	ions.							
Que	stion 21 (4 marks)									
(a)	Write a balanced chemical equation, using struof ethyl butanoate.	ictura	l forn	nulae	e, for	the t	form	ation	1	2
(b)	Common safety precautions in school labor glasses, gloves and lab coats. Justify the uspecifically required to safely make ethyl buta	ise of	anc							2

2021 - 9 -

Question 22 (3 marks)

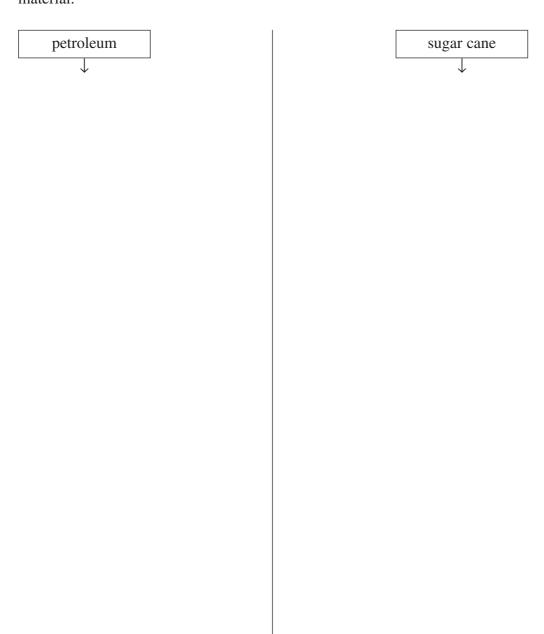
A student created the following models to demonstrate a chemical process.

(a)	What is the chemical process being modelled?	1
(b)	Why are models such as these useful?	2

2012 HIGHER SCHOOL CERTIFICATE EXAMINATION					
Chemistry					
Section I Dout D (continued)			Centre	Nur	nber
Section I – Part B (continued)					
			Studen	t Nur	nber
Question 23 (3 marks)					
Explain the impact of an increase in pressure and an incre solubility of carbon dioxide in water. Include a relevant equ				;	3
		•••••		•	
		•••••	••••••	•	
		•••••			
		•••••	•••••	•	
		•••••	•••••	•	
		•••••	•••••	•	
		•••••	•••••	•	
	••••••	•••••	•••••	•	
Question 24 (3 marks)					
Explain why ammonia is such an important raw material in	industry too	lay.			3
				•	
		•••••			
		•••••			
				•	
		•••••		•	
		•••••		•	

2022 - 11 -

BLANK PAGE


Chemistry		
Section I. Don't D (continued)	Centre Num	ber
Section I – Part B (continued)		
	Student Num	ber
Question 25 (3 marks)		
Describe the process of monitoring waterways for e	utrophication.	3

2023 - 13 -

Question 26 (8 marks)

Petroleum and sugar cane are both raw materials used for the production of ethanol.

(a) Construct separate flow diagrams for the production of ethanol from each raw material.

Question 26 continues on page 15

Question 26 (continued)

Compare the environmental sustainability of producing ethanol from these two raw materials.	3
	raw materials.

End of Question 26

BLANK PAGE

2012 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry										
Section I – Part B (continued)							C	entre	Nu	mber
Section 1 Ture B (continued)										
							St	ıden	t Nu	mber
Question 27 (3 marks)										
Iodine-131 decays through both beta and gamma emission only.	gamma emis	ssion	. Iod	ine-1	123 (decay	ys thi	ougł	1	
(a) Iodine-131 is used for diagnosis ar for diagnosis.	nd therapy v	where	eas I	odin	e-12	23 is	used	only	1	2
	beta em	issior	1	ga	mma	a emi	issio	ı		
Emitted particle	electi	on			gam	gamma-ray				
Ability to pass through biological tissue	low	low			high					
With reference to the information at two radioisotopes.	nd the table,	justii	fy th	e dif	fere	nt use	es of	these		
		••••••							•	
(b) Write the equation representing the	e decay of Ic	dine-	-131	by ł	oeta	emis	sion.			1

2024 - 17 -

Question 28 (3 marks)

3

2012 HIGHER SCHOOL CERTIFICATE EXAMINATION				
Chemistry				
,		Centre	Nur	 nber
Section I – Part B (continued)				
		Student	t Nur	 nber
Question 29 (5 marks)				
Draw a labelled diagram to show the layered structure of the atmos diagram include:	sphere.	In your	r	5
• the names of TWO atmospheric pollutants, positioned in the lay detrimental impact occurs	yers wh	nere the	;	
• the names of the sources of the two pollutants identified.				
			7	

2025 - 19 -

Question 30 (6 marks)

A chemist analysed aspirin tablets for quality control. The initial step of the analysis was the standardisation of a NaOH solution. Three 25.00 mL samples of a $0.1034~\text{mol}~\text{L}^{-1}$ solution of standardised HCl were titrated with the NaOH solution. The average volume required for neutralisation was 25.75 mL.

(a)	Calculate the molarity of the NaOH solution.								

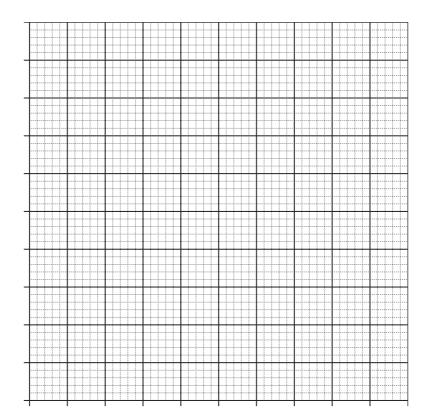
Three flasks were prepared each containing a mixture of 25 mL of water and 10 mL of ethanol. An aspirin tablet was dissolved in each flask. The aspirin in each solution was titrated with the standardised NaOH solution according to the following equation:

$$C_0H_8O_4(aq) + NaOH(aq) \rightarrow C_0H_7O_4Na(aq) + H_2O(l)$$

The following titration results were obtained.

Tablet	Volume (mL)
1	16.60
2	16.50
3	16.55

(b)	(i)	Calculate the average mass (mg) of aspirin per tablet.	3
	(ii)	Why was it necessary to include the ethanol in the mixture?	1


Question 31 (5 marks)

The boiling points of some alkanols are given in the table.

Alkanol	Boiling point (°C)
Methanol	65
Ethanol	79
Propan-1-ol	97
Pentan-1-ol	138
Hexan-1-ol	157
Heptan-1-ol	176

(a) Using the data provided, construct a graph that shows the relationship between carbon chain length and boiling point.

(b) Using the graph, predict the boiling point of butan-1-ol.

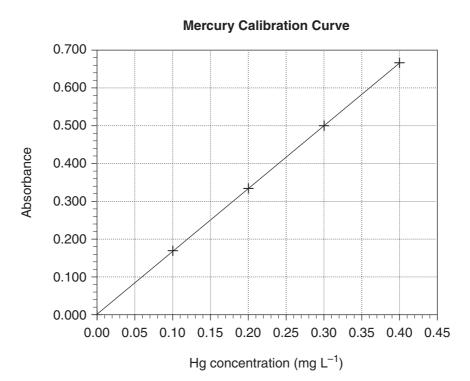
(c) What is the intermolecular force responsible for the trend shown in the graph? 1

BLANK PAGE

Chemistry									
Section I – Part B (continued)						C	entre	Nuı	mber
Section 1 – 1 art B (continueu)									
						Stı	ıden	t Nui	mber

Question 32 (3 marks)

Please turn over


-23 -

Question 32 (3 marks)

The mercury concentration of a certain fish species was determined by atomic absorption spectroscopy. The sample data are:

Mass of fish (g)	18.6
Final sample volume (mL)	25.0
Absorbance (mean)	0.280

3

A consumer wants to avoid eating fish with a mercury concentration greater than 0.5 mg/kg of fish.

Calculate the concentration of mercury in the fish sample and state whether the

consumer can eat this fish species.

Question 33 (6 marks)

Chemists can assist in reversing or minimising the environmental problems caused by technology and the human demand for products and services.	6
With reference to this statement, assess the need for chemists to collaborate when monitoring the environmental impact of a named electrochemical cell.	

BLANK PAGE

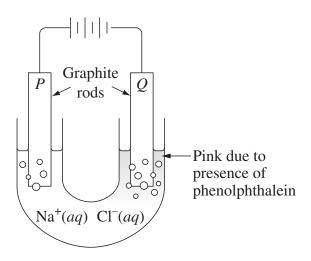
2012 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry

Section II

25 marks Attempt ONE question from Questions 34–38 Allow about 45 minutes for this section

Answer parts (a)–(c) of the question in Section II Answer Booklet 1. Answer parts (d)–(e) of the question in Section II Answer Booklet 2. Extra writing booklets are available.

Show all relevant working in questions involving calculations.


	Pages
Question 34	Industrial Chemistry
Question 35	Shipwrecks, Corrosion and Conservation
Question 36	The Biochemistry of Movement
Question 37	The Chemistry of Art
Question 38	Forensic Chemistry

-27 -

Question 34 — Industrial Chemistry (25 marks)

Answer parts (a)–(c) in Section II Answer Booklet 1.

(a) The following equipment was set up and the reaction allowed to proceed. Gases were produced at both electrodes.

Name this process and identify the gas at each electrode.

(b) The equilibrium constant expression for a gaseous reaction is as follows:

$$K = \frac{\left[N_2\right]\left[O_2\right]}{\left[NO\right]^2}$$

- (i) Write the equation for this reaction.
- (ii) 0.400 moles of NO was placed in a 1.00 L vessel at 2000°C. The equilibrium concentration of N_2 was found to be 0.198 mol L^{-1} .

1

Calculate the equilibrium constant for this reaction and use this value to describe the position of the equilibrium.

(iii) What could be changed that would result in a different value of K for this equilibrium?

Question 34 continues on page 29

Question 34 (continued)

(c) The production of sulfuric acid is shown.

$$S(s) \longrightarrow SO_2(g) \longrightarrow SO_3(g) \longrightarrow oleum \longrightarrow H_2SO_4(l)$$

(i) Describe the production of oleum and its conversion to concentrated sulfuric acid. Include chemical equations in your answer.

3

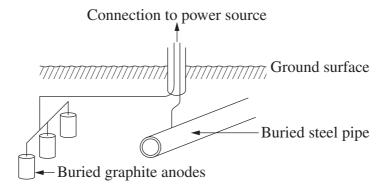
(ii) SO₃ can react with water to produce a solution of H₂SO₄.
 Why is it essential to convert SO₃ to oleum before the formation of H₂SO₄?

Answer parts (d)–(e) in Section II Answer Booklet 2.

- (d) (i) Outline how one of the steps involved in the Solvay process can be chemically modelled in the school laboratory. Include a balanced chemical equation in your answer.
 - (ii) Identify ONE risk factor and ONE difficulty associated with the laboratory modelling of the step.
- (e) Initially soap was the only product of the surfactant industry. Due to societal pressures and chemical developments, production in this industry has evolved to include a wide range of products.

Account for these changes over time with reference to the structure and uses of surfactants.

End of Question 34


Question 35 — Shipwrecks, Corrosion and Conservation (25 marks)

Answer parts (a)–(c) in Section II Answer Booklet 1.

(a) A sealed container transporting a recently recovered artefact is damaged, allowing seawater to escape while appearing to leave the artefact intact.

Why would the loss of seawater be of concern to the maritime archaeologists receiving the artefact?

(b) The diagram illustrates one method of protecting a steel pipe.

- (i) Explain how this method works.
- (ii) Suggest an alternative way the pipe can be chemically protected. Use half-equations to support your answer.

3

Question 35 continues on page 31

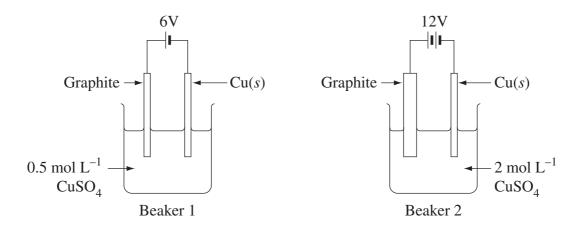
Question 35 (continued)

(c) Corrosion in some wrecks can be represented in part by the following half-equation.

$${\rm SO_4}^{2-} + 10 {\rm H}^+ + 8 {\rm e}^- \rightarrow {\rm H_2S}(aq) + 4 {\rm H_2O}$$

(i) Under what conditions would this process occur naturally?

3


2

(ii) These conditions were simulated in a laboratory by placing a piece of steel in an appropriate solution. The amount of hydrogen sulfide produced was monitored over time.

Calculate the loss of iron, in grams, from the piece of steel if 0.76 g of hydrogen sulfide was produced. Include a balanced equation in your answer.

Answer parts (d)–(e) in Section II Answer Booklet 2.

(d) A student set up the following two beakers to investigate factors affecting electrolysis.

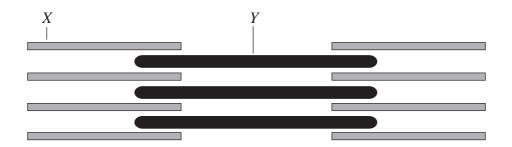
(i) Why is this investigation not valid?

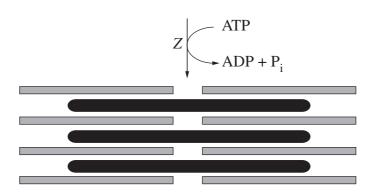
1

(ii) Draw diagrams to show how this investigation should be carried out to accurately identify TWO factors affecting electrolysis. Indicate the expected results on your diagrams.

4

(e) Critically evaluate the continued use of steel in ship building with reference to the history of ocean-going vessels, the composition of steel and ways in which its interaction with the environment can be controlled.


7


End of Question 35

Question 36 — The Biochemistry of Movement (25 marks)

Answer parts (a)–(c) in Section II Answer Booklet 1.

(a) The diagram illustrates schematically the current model of muscle contraction. 3

Name protein X, protein Y and metal ion Z.

- (b) (i) Provide the general formula for a fatty acid.
- 1

1

- (ii) Provide the structural formula for glycerol.
- (iii) Account for the difference in the aqueous solubility of glycerol compared to that of fatty acids and triacylglycerols (TAGs).

Question 36 continues on page 33

Question 36 (continued)

(c) (i) Why do fats have a greater energy density than carbohydrates?
 (ii) Carbohydrates and fats have parts of their oxidative metabolic pathways in common.

Use a flow diagram to outline the main stages of the aerobic metabolism of fats and carbohydrates.

In your diagram clearly identify:

- separate pathways
- common pathway
- stage where most of the ATP is produced
- stage where most of the carbon dioxide is released.

Answer parts (d)–(e) in Section II Answer Booklet 2.

- (d) (i) Compare the forces and bonds that determine the level of structure in proteins.
 - (ii) How is the secondary structure of proteins affected by changes in pH?

2

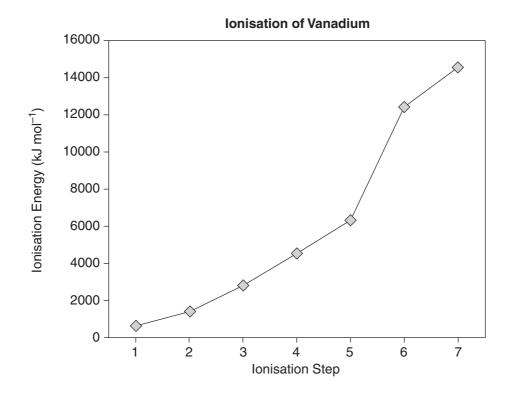
(e) Compare and contrast the aerobic and anaerobic metabolism of glucose within the context of muscle function during different forms of exercise and the relative amounts of energy released.

End of Question 36

Question 37 — The Chemistry of Art (25 marks)

Answer parts (a)–(c) in Section II Answer Booklet 1.

(a) The formulae of three coordination complexes are shown.


$$[Mn(H_2O)_6]^{2+}$$

 $[Mn(NH_3)_2(H_2O)_3OH]^{2+}$
 $[Mn(CO)_4NO]$

- (i) What is the oxidation state of manganese in $[Mn(NH_3)_2(H_2O)_3OH]^{2+}$?
- (ii) Draw a Lewis structure of ONE of these coordination complexes, and describe the bonding in this molecule.
- (b) (i) Why has copper sulfate pentahydrate (CuSO₄·5H₂O), with its strong blue colour, not been used as a pigment?
 - (ii) Describe a named process that can be used to attach pigments to surfaces.

Question 37 continues on page 35

Question 37 (continued)

(c) The ionisation energies of vanadium are shown in the graph.

Explain the relationship between ionisation energy and the arrangement of electrons in the vanadium atom.

5

Answer parts (d)–(e) in Section II Answer Booklet 2.

- (d) (i) Describe an experiment that could be performed to relate the colour of iron solutions to the electronic configuration of iron ions, if the supplied salt is iron(II) chloride crystals.
 - (ii) Write the electronic configuration of Fe²⁺ and Fe³⁺.
- (e) Evaluate the contribution of the Bohr model to the development of our understanding of the structure of the atom.

End of Question 37

Question 38 — Forensic Chemistry (25 marks)

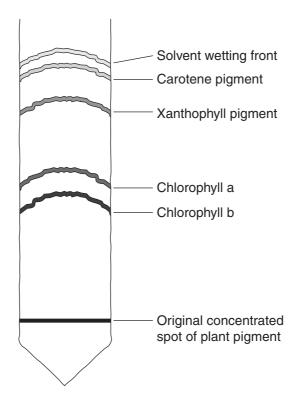
Answer parts (a)–(c) in Section II Answer Booklet 1.

(a) Describe how the different characteristics of a soil sample would allow forensic chemists to trace its origin.

3

3

(b) An athlete is required to give two urine samples. Sample A is tested for evidence of substances on the banned substance list. If a banned substance is detected in Sample A then Sample B is tested. If both samples are positive for a banned substance then the athlete is asked to explain the findings at a court hearing.


- (i) Describe what precautions should be undertaken to ensure that the evidence collected for this purpose is accepted by the court.
- (ii) New technology is constantly required in forensic chemistry to keep up with drug cheats or improve the outcomes of a criminal investigation.

Outline how recent advances in technology could have altered the outcome of a specific case.

Question 38 continues on page 37

Question 38 (continued)

(c) The diagram shows the separation of plant pigments by chromatography using hexane as a solvent.

- (i) State which of the pigments is the least polar and justify your choice.
- (ii) Explain how changing the solvent would affect the separation process. 3

2

Question 38 continues on page 38

Question 38 (continued)

Answer parts (d)–(e) in Section II Answer Booklet 2.

(d) Sucrose is a carbohydrate composed of fructose and glucose.

- (i) Complete the structural equation for the formation of sucrose.
- (ii) Outline a chemical test that could be performed to distinguish between sucrose and the monomers fructose and glucose. Include a chemical equation in your answer.

2

(e) Analyse how modern techniques utilise the features of DNA and manipulate it to successfully generate an individual's DNA profile.

End of paper

2012 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry

DATA SHEET

Avogadro constant, N_A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	100 kPa and	
_	at 0°C (273.15 K)	. 22.71 L
	at 25°C (298.15 K)	. 24.79 L
Ionisation constant for water at	t 25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water		$1.4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

$$pH = -\log_{10}[H^+] \qquad \qquad \Delta H = -m C \Delta T$$

Some standard potentials

		F	
$K^+ + e^-$	\rightleftharpoons	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	-2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}\mathrm{H}_2(g) + \mathrm{OH}^-$	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	2OH-	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I^-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	\rightleftharpoons	I^-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\operatorname{Cl}_2(g) + \mathrm{e}^-$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}$ F ₂ (g) + e ⁻	\rightleftharpoons	F-	2.89 V

Aylward and Findlay, *SI Chemical Data* (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

	2 He 4.003 Helium	10 Ne 20.18 Neon	18 Ar 39.95 ^{Argon}	36 Kr 83.80 Krypton	54 Xe 131.3 Xenon	86 Rn Radon		
		9 F 19.00 Fluorine	17 C1 35.45 Chlorine	35 Br 79.90 Bromine	53 I 126.9 Iodine	85 At		•
		8 O 16.00 Oxygen	16 S 32.07 Sulfur	34 Se 78.96 Selenium	52 Te 127.6 Tellurium	84 Po		
		7 N 14.01 Nitrogen	15 P 30.97 Phosphorus	33 As 74.92 Arsenic	Sb 121.8 Antimony	83 Bi 209.0 Bismuth		
		6 C 12.01 Carbon	14 Si 28.09 Silicon	32 Ge 72.64 Germanium	50 Sn 118.7	82 Pb 207.2 Lead		
		5 B 10.81 Boron	13 A1 26.98 Aluminium	31 Ga 69.72 Gallium	49 In 114.8 Indium	81 T1 204.4 Thallium		
				30 Zn 65.38 Zinc	48 Cd 112.4 Cadmium	80 Hg 200.6 Mercury	112 Cn	
FIFMENTS				29 Cu 63.55 Copper	47 Ag 107.9 Silver	79 Au 197.0 Gold	Ds Rg Damstadtium Roentgenium	
OF THE				28 Ni 58.69 ^{Nickel}	46 Pd 106.4 Palladium	78 Pt 195.1 Platinum	110 Ds	
TARIFO		79 Au 197.0 Gold		27 Co 58.93 Cobalt	45 Rh 102.9 Rhodium	77 Ir 192.2 Iridium	109 Mt	
- r	`	Atomic Number Symbol Standard Atomic Weight Name		26 Fe 55.85 Iron	44 Ru 101.1 Ruthenium	76 Os 190.2 Osmium	108 Hs	
PERIODIC		A Standard		25 Mn 54.94 Manganese	43 Tc	75 Re 186.2 Rhenium	107 Bh	
				24 Cr 52.00 Chromium	42 Mo 95.96 Molybdenum	74 W 183.9 Tungsten	106 Sg Seaborgium	
				23 V 50.94 Vanadium	41 Nb 92.91 Niobium	73 Ta 180.9 Tantalum		
				22 Ti 47.87 Titanium	40 Zr 91.22 Zirconium	72 Hf 178.5 Hafnium	104 Rf Rutherfordium	
				21 Sc 44.96 Scandium	39 Y 88.91 Yttrium	57-71 Lanthanoids	89–103 Actinoids	
		4 Be 9.012 Beryllium	12 Mg 24.31 Magnesium	20 Ca 40.08	38 Sr 87.61 Strontium	56 Ba 137.3 Barium	88 Ra	
	1 H 1.008 Hydrogen	3 Li 6.941 Lithium	11 Na 22.99 Sodium	19 K 39.10 Potassium	37 Rb 85.47 Rubidium	55 Cs 132.9 Caesium	87 Fr	
						- 40 -		

					1					
	71	Lu	175.0	Lutetium			103	Γr		Lawrencium
	70	$^{\mathrm{Yb}}$	173.1	Ytterbium			102	$\overset{ ext{No}}{ ext{No}}$		Nobelium
	69	Tm	168.9	Thulium			101	Md		Mendelevium
	89	Ä	167.3	Erbium			100	Fm		Fermium
	<i>L</i> 9	Но	164.9	Holmium			66	Es		Einsteinium
	99	Dy	162.5	Dysprosium			86	Ç		Californium
	9	$^{\mathrm{Tp}}$	158.9	Terbium			26	Bk		Berkelium
	64	РS	157.3	Gadolinium			96	Cm		Curium
	63	Eu	152.0	Europium			95	Am		Americium
	62	Sm	150.4	Samarium			94	Pu		Plutonium
	61	Pm		Promethium			93	dN	1	Neptunium
	09	PΝ	144.2	Neodymium			92	n	238.0	Uranium
	59	Pr	140.9	Praseodymium			91	Pa	231.0	Protactinium
2	58	င်	140.1	Cerium			90	Th	232.0	Thorium
Cantinanora	57	La	138.9	Lanthanum		Actinoids	68	Ac		Actinium
ا -					,	7				

Elements with atomic numbers 113 and above have been reported but not fully authenticated.

Standard atomic weights are abridged to four significant figures. Elements with no reported values in the table have no stable nuclides.

The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of data. Some data may have been modified.