

# 2012 HSC Chemistry Marking Guidelines

#### Section I, Part A

#### Multiple-choice Answer Key

| Question | Answer |
|----------|--------|
| 1        | В      |
| 2        | D      |
| 3        | А      |
| 4        | С      |
| 5        | В      |
| 6        | С      |
| 7        | D      |
| 8        | D      |
| 9        | В      |
| 10       | В      |
| 11       | В      |
| 12       | D*     |
| 13       | D      |
| 14       | А      |
| 15       | С      |
| 16       | А      |
| 17       | С      |
| 18       | С      |
| 19       | А      |
| 20       | А      |

\* D was the best answer for Question 12.

However, the correct answer is *2-chloro-3-fluorobutane*, which was not one of the alternatives.

Teachers are reminded that IUPAC provides a system for the clear communication of chemical nomenclature.

# Section I, Part B

### Question 21 (a)

| Criteria                                                                                                                        | Marks |
|---------------------------------------------------------------------------------------------------------------------------------|-------|
| • Writes a correct balanced structural chemical equation, including catalyst                                                    | 2     |
| <ul> <li>Has correct structural formulae for reactants and products, may omit H<sub>2</sub>O or catalyst</li> <li>OR</li> </ul> | 1     |
| <ul> <li>All correct but small error in a structural formula</li> </ul>                                                         |       |

#### Question 21 (b)

| Criteria                                            | Marks |
|-----------------------------------------------------|-------|
| Identifies a precaution and provides a valid reason | 2     |
| Identifies a precaution                             | 1     |

### Question 22 (a)

| Criteria                                  | Marks |
|-------------------------------------------|-------|
| Correctly identifies the chemical process | 1     |

#### Question 22 (b)

| Criteria                                               | Marks |
|--------------------------------------------------------|-------|
| • Gives specific reasons for the usefulness of a model | 2     |
| Gives a reason for the usefulness of the model         | 1     |



### Question 23

| Criteria                                                                                                                                                                          | Marks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates thorough knowledge and understanding of disturbances to pressure and temperature on the solubility of CO <sub>2</sub> in an equilibrium                            | 3     |
| Includes correct equation                                                                                                                                                         |       |
| <ul> <li>Demonstrates a sound knowledge and understanding of disturbances to<br/>pressure and temperature on the solubility of CO<sub>2</sub> in an equilibrium<br/>OR</li> </ul> | 2     |
| • Demonstrates thorough knowledge and understanding of the solubility of CO <sub>2</sub> in an equilibrium                                                                        |       |
| • Demonstrates a sound knowledge and understanding of the solubility of CO <sub>2</sub> in an equilibrium                                                                         | 1     |

### Question 24

| Criteria                                                                           | Marks |
|------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough knowledge of the importance of ammonia as a raw material | 3     |
| • Demonstrates a sound knowledge of the importance of ammonia as a raw material    | 2     |
| • Demonstrates a basic knowledge of the importance of ammonia as a raw material    | 1     |

### **Question 25**

| Criteria                                                                                                        | Marks |
|-----------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates thorough knowledge and understanding of the process of monitoring of eutrophication in waterways | 3     |
| Describes tests which could be performed                                                                        |       |
| • Demonstrates a sound knowledge and understanding of the process of monitoring of eutrophication in waterways  | 2     |
| • Gives details of the tests which could be performed                                                           |       |
| • Demonstrates some knowledge and understanding of the monitoring of eutrophication in waterways                | 1     |
| OR                                                                                                              |       |
| • Gives basic details of the tests which could be performed                                                     |       |



### Question 26 (a)

| Criteria                                                                                               | Marks |
|--------------------------------------------------------------------------------------------------------|-------|
| Demonstrates a thorough knowledge of both processes                                                    |       |
| • Communicates information in a logical progression of ideas using a flow chart                        | 5     |
| Demonstrates a sound knowledge of both processes                                                       |       |
| • Communicates information in a logical progression of ideas using a flow chart                        | 4     |
| • Demonstrates a basic knowledge of both processes OR demonstrates a thorough knowledge of ONE process | 3     |
| • Communicates information in a logical progression of ideas using a flow chart                        | 3     |
| Demonstrates a limited knowledge of both processes                                                     |       |
| OR                                                                                                     | 2     |
| Demonstrates a basic knowledge of ONE process                                                          |       |
| Demonstrates a limited knowledge of ONE process                                                        | 1     |



### Question 26 (b)

| Criteria                                                                                                             | Marks |
|----------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough knowledge of the sustainability of ethanol production from a comparison of the two sources | 3     |
| • Demonstrates a sound knowledge of the sustainability of ethanol production from a comparison of the two sources    | 2     |
| • Demonstrates a basic knowledge of the sustainability of ethanol production from the two sources                    | 1     |

### Question 27 (a)

| Criteria                                                                                                                                                                                   | Marks |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Justifies the different uses of the radioisotopes, by demonstrating an understanding of penetration and energy transfer for both types of emission                                       | 2     |
| • Justifies the different uses of the radioisotopes, by demonstrating an understanding of penetration or energy transfer for ONE type of emission or a partial understanding of both types | 1     |

### Question 27 (b)

| Criteria                  | Marks |
|---------------------------|-------|
| Correct equation is given | 1     |

## Question 28

| Criteria                                           | Marks |
|----------------------------------------------------|-------|
| Correctly calculates pH of resultant solution      | 3     |
| Completes calculation with ONE error               | 2     |
| Supplies balanced chemical equation                |       |
| OR                                                 |       |
| • Calculates moles of $H_3O^+$ or $OH^-$ initially | 1     |
| OR                                                 |       |
| Correctly performs a pH calculation                |       |



### Question 29

| Criteria                                                                               | Marks |
|----------------------------------------------------------------------------------------|-------|
| • Thorough understanding of structure of atmosphere, position and source of pollutants | 4–5   |
| • Sound understanding of structure of atmosphere, position and source of pollutants    | 3     |
| • Basic understanding of structure of atmosphere, position and source of pollutants    | 2     |
| • Limited understanding of structure of atmosphere, position and source of pollutants  | 1     |

## Question 30 (a)

| Criteria                           | Marks |
|------------------------------------|-------|
| Correctly calculates NaOH molarity | 2     |
| Calculates [NaOH] with ONE error   |       |
| OR                                 | 1     |
| Calculates moles of HCl or NaOH    |       |

### Question 30 (b) (i)

| Criteria                                                                                                                                                                     | Marks |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Correctly calculates the mass of aspirin (average)                                                                                                                         | 3     |
| <ul> <li>Calculates mass of aspirin with ONE error<br/>OR</li> <li>Calculates moles of NaOH/C<sub>9</sub>H<sub>8</sub>O<sub>4</sub> and molar mass aspirin</li> </ul>        | 2     |
| <ul> <li>Calculates moles of NaOH/C<sub>9</sub>H<sub>8</sub>O<sub>4</sub><br/>OR</li> <li>Calculates molar mass aspirin (C<sub>9</sub>H<sub>8</sub>O<sub>4</sub>)</li> </ul> | 1     |



### Question 30 (b) (ii)

| Criteria                                         | Marks |
|--------------------------------------------------|-------|
| Correctly identifies the solvent role of ethanol | 1     |

### Question 31 (a)

| Criteria                                          | Marks |
|---------------------------------------------------|-------|
| Correct axes/labels. Data correctly plotted       | 3     |
| Data correctly plotted without gap for butan-l-ol | 2     |
| Data correctly plotted without gap. No labels     | 1     |

### Question 31 (b)

| Criteria                                        | Marks |
|-------------------------------------------------|-------|
| Correctly predicts the boiling point from graph | 1     |

### Question 31 (c)

|   | Criteria                                                                      | Marks |
|---|-------------------------------------------------------------------------------|-------|
| • | • Correctly relates increasing dispersion forces to increasing boiling points | 1     |

### Question 32

| Criteria                                                                                                                    | Marks |
|-----------------------------------------------------------------------------------------------------------------------------|-------|
| Identifies correct concentration from calibration curve                                                                     |       |
| Calculates correct concentration with correct units                                                                         | 3     |
| Makes correct conclusion                                                                                                    |       |
| • Identifies correct concentration from calibration curve and performs partial calculation and provides relevant conclusion |       |
| OR                                                                                                                          | 2     |
| • Performs calculation on incorrect concentration and provides relevant conclusion                                          |       |
| Uses calibration curve correctly and provides relevant conclusion                                                           |       |
| OR                                                                                                                          | 1     |
| Gives partial calculation                                                                                                   |       |



## Question 33

| Criteria                                                                                                                                                         | Marks |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough knowledge and understanding of the identified roles of chemists and the environmental impact of a correctly named electrochemical cell |       |
| Assesses the need for collaboration between chemists                                                                                                             | 6     |
| <ul> <li>Demonstrates coherence and logical progression of ideas with correct<br/>scientific terminology used</li> </ul>                                         |       |
| • Demonstrates a sound knowledge and understanding of the identified roles of chemists and the environmental impact of a correctly named electrochemical cell    | 4–5   |
| Discusses collaboration between chemists                                                                                                                         |       |
| Communicates some scientific principles and ideas clearly                                                                                                        |       |
| • Demonstrates a basic knowledge and understanding of the role of chemists and the environmental impact of a named electrochemical cell                          | 2–3   |
| Communicates ideas in a basic form using general scientific language                                                                                             |       |
| • Demonstrates a limited knowledge and understanding of the role of chemists OR the environmental impact of a named electrochemical cell                         | 1     |
| Communicates simple ideas                                                                                                                                        |       |



# Section II

### Question 34 (a)

| Criteria                                             | Marks |
|------------------------------------------------------|-------|
| Correctly identifies electrolysis                    | 3     |
| Correctly identifies gases at correct electrodes     | 3     |
| Correctly identifies electrolysis                    |       |
| Correctly identifies gases at incorrect electrodes   |       |
| OR                                                   |       |
| Correctly identifies electrolysis                    | 2     |
| Correctly identifies one gas at correct electrode    |       |
| OR                                                   |       |
| Correctly identifies two gases at correct electrodes |       |
| Correctly identifies electrolysis                    |       |
| OR                                                   | 1     |
| Correctly identifies one gas                         |       |

### Question 34 (b) (i)

| Criteria                                                       | Marks |
|----------------------------------------------------------------|-------|
| Correctly writes equation from equilibrium constant expression | 1     |

### Question 34 (b) (ii)

| Criteria                                                               | Marks |
|------------------------------------------------------------------------|-------|
| Correctly calculates K and infers position of equilibrium              | 3     |
| • Calculation of K with ONE error and infers position of equilibrium   |       |
| OR                                                                     | 2     |
| Correctly calculates K                                                 |       |
| • Identifies equilibrium concentration of one species other than $N_2$ |       |
| OR                                                                     |       |
| Substitutes calculated data into expression for K                      | 1     |
| OR                                                                     |       |
| Correctly infers position of equilibrium from incorrect value of K     |       |

### Question 34 (b) (iii)

| Criteria             | Marks |
|----------------------|-------|
| Gives correct answer | 1     |

### Question 34 (c) (i)

| Criteria                                                                                               | Marks |
|--------------------------------------------------------------------------------------------------------|-------|
| • Description of the process including correct equations for the production of oleum and sulfuric acid | 3     |
| • Description of the process and one correct equation for the production of oleum or sulfuric acid     |       |
| OR                                                                                                     | 2     |
| No description and two correct equations                                                               | 2     |
| OR                                                                                                     |       |
| Description only and one correct equation                                                              |       |
| Description only                                                                                       |       |
| OR                                                                                                     |       |
| One correct equation                                                                                   | 1     |
| OR                                                                                                     |       |
| Two balanced equations, no states                                                                      |       |

### Question 34 (c) (ii)

| Criteria                                           | Marks |
|----------------------------------------------------|-------|
| States direct reaction is exothermic               | 2     |
| • Identifies difficulty in collecting $H_2SO_4(l)$ | Z     |
| States direct reaction is exothermic               |       |
| OR                                                 | 1     |
| • Identifies difficulty in collecting $H_2SO_4(l)$ |       |

### Question 34 (d) (i)

| Criteria                                                                   | Marks |
|----------------------------------------------------------------------------|-------|
| Description of chemical step, linked to Solvay process                     | 3     |
| Appropriate equation included                                              | 5     |
| Description of chemical step not linked to Solvay process                  |       |
| Appropriate equation included                                              | 2     |
| OR                                                                         | 2     |
| • Description of chemical step, linked to the Solvay process – no equation |       |
| Description of chemical step only                                          |       |
| OR                                                                         | 1     |
| Chemical equation only                                                     |       |

### Question 34 (d) (ii)

| Criteria                                                                        | Marks |
|---------------------------------------------------------------------------------|-------|
| • Identifies one risk factor and one relevant difficulty in modelling this step | 2     |
| Identifies one risk factor                                                      |       |
| OR                                                                              | 1     |
| Identifies one relevant difficulty in modelling this step                       |       |



### Question 34 (e)

| Criteria                                                                                                                                     | Marks |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates thorough knowledge and understanding of the relationship between structure and uses of soaps and detergents                   |       |
| • Accounts for the development of modern detergents in terms of supply of raw materials, effectiveness in hard water, environmental concerns | 6–7   |
| Uses correct and relevant chemistry                                                                                                          |       |
| • Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas                                 |       |
| • Demonstrates sound knowledge and understanding of relationship between structure and uses of soap and detergents                           |       |
| • Outlines the development of modern detergents in terms of some aspects above                                                               | 4–5   |
| Uses some correct and relevant chemistry                                                                                                     |       |
| • Communicates some scientific principles and ideas in a clear manner                                                                        |       |
| • Demonstrates a basic knowledge and understanding of soaps and detergents and their uses                                                    |       |
| • Identifies some factors relating to the development of detergents                                                                          | 2–3   |
| Communicates ideas in a basic form using general scientific terms                                                                            |       |
| • Demonstrates a limited knowledge and understanding of soaps and/or detergents and their uses and/or structures                             | 1     |
| Communicates simple ideas                                                                                                                    |       |



### Question 35 (a)

| Criteria                                                                                                                           | Marks |
|------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough understanding of the processes occurring when a saturated solution evaporates and the damage this causes | 3     |
| • Demonstrates a sound understanding of the processes occurring when a saturated solution evaporates                               | 2     |
| Identifies that drying the artefact could cause damage OR                                                                          | 1     |
| • Displays a limited understanding of the processes occurring when a saturated solution evaporates                                 |       |

### Question 35 (b) (i)

| Criteria                                                                                      | Marks |
|-----------------------------------------------------------------------------------------------|-------|
| Demonstrates coherence and logical progression of ideas                                       |       |
| • Demonstrates a thorough knowledge of cathodic protection by the use of applied current      | 3     |
| Communicates ideas in a clear manner                                                          |       |
| • Sound understanding of cathodic protection without identification of<br>'impressed current' | 2     |
| OR                                                                                            |       |
| Impressed current identified but explanation lacks coherence                                  |       |
| Limited understanding of cathodic protection                                                  |       |
| OR                                                                                            | 1     |
| Simple statement of rust prevention                                                           |       |

## Question 35 (b) (ii)

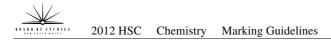
| Criteria                                                                     | Marks |
|------------------------------------------------------------------------------|-------|
| • Uses correct half-equations to describe the actions of a sacrificial anode | 2     |
| • Identifies use of a sacrificial anode without supporting equations         | 1     |

## Question 35 (c) (i)

| Criteria                                                | Marks |
|---------------------------------------------------------|-------|
| Correctly identifies locations as deep sea environments | 2     |
| Provides a factor for this process                      | 2     |
| Correctly identifies locations as deep sea environments |       |
| OR                                                      | 1     |
| Provides a factor for this process                      |       |

### Question 35 (c) (ii)

| Criteria                                                          | Marks |
|-------------------------------------------------------------------|-------|
| Correctly balanced equation given                                 | 3     |
| Mass of iron correctly calculated with all working shown          | 5     |
| Overall equation attempted, but incorrectly balanced              |       |
| Calculations correct based on equation shown                      |       |
| OR                                                                |       |
| Overall equation correct                                          | 2     |
| Calculations attempted with minimal error                         | 2     |
| OR                                                                |       |
| • Half-equation present and working shown for calculation of mass |       |
| Calculations contain errors in stoichiometry only                 |       |
| • Moles of $H_2S$ calculated                                      |       |
| OR                                                                | 1     |
| Provides balanced equation                                        |       |




### Question 35 (d) (i)

| Criteria                                    | Marks |
|---------------------------------------------|-------|
| Gives reason relating variables to validity | 1     |

### Question 35 (d) (ii)

| Criteria                                                                 | Marks |
|--------------------------------------------------------------------------|-------|
| Correctly draws beakers to illustrate valid investigation of TWO factors | 4     |
| Lists expected results for BOTH factors                                  | 4     |
| Correctly draws beakers to illustrate valid investigation of TWO factors |       |
| Lists one expected result                                                |       |
| OR                                                                       | 3     |
| • Draws beakers to illustrate investigation with minor error and         |       |
| Lists expected results for BOTH factors                                  |       |
| Draws beakers only                                                       |       |
| OR                                                                       |       |
| Draws beakers and labels results for ONE investigation                   | 2     |
| OR                                                                       |       |
| Lists expected results for TWO factors                                   |       |
| Describes a valid investigation                                          |       |
| OR                                                                       | 1     |
| Lists one expected result for an identified experiment                   |       |



### Question 35 (e)

| Criteria                                                                                                                                                           | Marks |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough knowledge and understanding of the history of ocean-going vessels, the composition of types of steel and methods of preventing corrosion | 6–7   |
| • Provides a judgment about the use of steel for ship building in light of these concepts                                                                          | 0-7   |
| • Writes logically, providing a coherent progression of ideas                                                                                                      |       |
| • Demonstrates a sound knowledge and understanding of the history of ocean-going vessels, the composition of types of steel and methods of preventing corrosion    | 4–5   |
| • Identifies benefits of using steel in ship building                                                                                                              | _     |
| Communicates ideas in a clear manner                                                                                                                               |       |
| • Demonstrates a thorough knowledge and understanding of EITHER the history of ocean-going vessels OR the composition of steel OR methods of preventing corrosion  |       |
| OR                                                                                                                                                                 | 2–3   |
| • Demonstrates a basic knowledge and understanding of the history of ocean-going vessels, the composition of types of steel and methods of preventing corrosion    | 2–3   |
| Communicates ideas using general scientific terms                                                                                                                  |       |
| • Demonstrates a limited understanding of the history of ship building                                                                                             |       |
| OR                                                                                                                                                                 | 1     |
| <ul> <li>Demonstrates a limited knowledge of the composition of steel OR<br/>methods to prevent corrosion</li> </ul>                                               | -     |



### Question 36 (a)

| Criteria                                  | Marks |
|-------------------------------------------|-------|
| Identifies all THREE components correctly | 3     |
| Identifies TWO components correctly       |       |
| OR                                        | 2     |
| Names THREE components                    |       |
| Identifies ONE component                  | 1     |

### Question 36 (b) (i)

| Criteria                 | Marks |
|--------------------------|-------|
| Provides correct formula | 1     |

### Question 36 (b) (ii)

| Criteria                 | Marks |
|--------------------------|-------|
| Provides correct formula | 1     |

#### Question 36 (b) (iii)

| Criteria                                                           | Marks |
|--------------------------------------------------------------------|-------|
| • Demonstrates a sound knowledge of the THREE types of compounds   | 3     |
| Demonstrates a sound knowledge of TWO types of compounds           |       |
| OR                                                                 | 2     |
| • Demonstrates a basic knowledge of all THREE types of compounds   |       |
| • Demonstrates a basic knowledge of TWO types of compounds         |       |
| OR                                                                 | 1     |
| • Demonstrates a limited knowledge of all THREE types of compounds |       |

### Question 36 (c) (i)

| Criteria                               | Marks |
|----------------------------------------|-------|
| Recognises relative level of oxidation | 1     |

### Question 36 (c) (ii)

| Criteria                                                                       | Marks |
|--------------------------------------------------------------------------------|-------|
| • Shows flow diagram complete with at least the eight components               |       |
| • Shows CO <sub>2</sub> from Krebs cycle                                       | 4     |
| Shows ATP from Electron transport chain                                        |       |
| Shows correct order, majority of components given                              | 2     |
| • Shows either CO <sub>2</sub> from Krebs or ATP from Electron transport chain | 5     |
| Shows some elements of flow diagram in correct order                           | 2     |
| Shows some elements of flow diagram                                            | 1     |

### Question 36 (d) (i)

| Criteria                                                                          | Marks |
|-----------------------------------------------------------------------------------|-------|
| Identifies bond type in primary structure                                         | 3     |
| • Identifies forces and bonds that determine secondary and tertiary structure     | 5     |
| Identifies bond type in primary structure                                         |       |
| • Identifies TWO factors or bonds that determine secondary and tertiary structure | 2     |
| Identifies bond type in primary structure                                         |       |
| OR                                                                                | 1     |
| • Identifies TWO factors or bonds that determine secondary and tertiary structure | 1     |

### Question 36 (d) (ii)

| Criteria                                                | Marks |
|---------------------------------------------------------|-------|
| Shows how secondary structure is denatured by pH change | 2     |
| Identifies secondary structure denatured                | 1     |



### Question 36 (e)

| Criteria                                                                                                                              | Marks |
|---------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough knowledge and understanding of the biochemical pathways releasing energy during different forms of exercise | 6–7   |
| • Demonstrates coherence and logical progression of scientific principles and ideas                                                   | 0-7   |
| • Demonstrates a sound knowledge and understanding of the biochemical pathways releasing energy during exercise                       | 4–5   |
| Communicates some scientific ideas in a clear manner                                                                                  |       |
| • Demonstrates a basic knowledge and understanding of the biochemical pathways releasing energy during exercise                       | 2–3   |
| Communicates ideas in a basic form using general scientific terms                                                                     |       |
| • Demonstrates a limited knowledge of the biochemical pathways releasing energy                                                       | 1     |
| Communicates simple ideas                                                                                                             |       |



### Question 37 (a) (i)

| Criteria                         | Marks |
|----------------------------------|-------|
| Provides correct oxidation state | 1     |

### Question 37 (a) (ii)

| Criteria                                                                                                                           | Marks |
|------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Structure is drawn correctly, including charge if present. Ligands show appropriate orientation (ie not bonded through hydrogen) | 2     |
| Explanation of bonding is correct in essential features                                                                            |       |
| • Either structure is drawn correctly or explanation of bonding is correct in essential features                                   | 1     |

### Question 37 (b) (i)

| Criteria                                                                                                                                                                          | Marks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • A correct reason is given, with both sufficient description of the problem and the conditions under which it would occur to show knowledge of the chemistry of $CuSO_4.5H_2O$ . | 2     |
| • A simple description of the potential problem is given without reference to the chemistry of $CuSO_4.5H_2O$ .                                                                   | 1     |

### Question 37 (b) (ii)

| Criteria                                                                                                                                                                    | Marks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough knowledge of the process, such as naming the process, naming the binder and describing the method by which the pigment is fixed to the substrate. | 3     |
| • Demonstrates a basic knowledge of the process, such as naming the process and binding agent.                                                                              | 2     |
| • Demonstrates limited knowledge, such as the name of a process.                                                                                                            | 1     |



## Question 37 (c)

| Criteria                                                                                                                                                                        | Marks |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough knowledge of the topic, and presents all relevant factors, including electron-electron repulsion and inner shell stability vs valence shell stability | 5     |
| • Demonstrates a sound knowledge of topic, and presents a majority of relevant factors                                                                                          | 4     |
| • Demonstrates a basic knowledge of the topic, and presents one factor                                                                                                          | 3     |
| Demonstrates a limited knowledge of the topic                                                                                                                                   | 1–2   |

### Question 37 (d) (i)

| Criteria                                                                                                                   | Marks |
|----------------------------------------------------------------------------------------------------------------------------|-------|
| • States: need to dissolve salt, need to oxidise Fe <sup>2+</sup> , importance of using a non-contributing oxidising agent | 3     |
| States two significant factors of the experiment design                                                                    | 2     |
| States one significant factor of the experiment design                                                                     | 1     |

### Question 37 (d) (ii)

| Criteria                                           | Marks |
|----------------------------------------------------|-------|
| Both configurations correct                        | 2     |
| One configuration correct or two partially correct | 1     |



## Question 37 (e)

| Criteria                                                                                                                                                            | Marks |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough knowledge and understanding of the place of the Bohr model of the atom including both positive and negative aspects of the model          | 6–7   |
| • Demonstrates coherent and logical progression of scientific principles and ideas                                                                                  |       |
| • Demonstrates a sound knowledge and understanding of the place of the Bohr model of the atom, including positive and/or negative aspects of the model              | 4–5   |
| Communicates some scientific ideas in a clear manner                                                                                                                |       |
| • Demonstrates a basic knowledge and understanding of the place of the Bohr model of the atom, with limited reference to positive and negative aspects of the model | 2–3   |
| Communicates ideas in a basic form using general scientific terms                                                                                                   |       |
| • Demonstrates a limited knowledge and understanding of the place of the Bohr model of the atom, and does not address positive and negative aspects of the model    | 1     |
| Communicates simple ideas                                                                                                                                           |       |



### Question 38 (a)

| Criteria                                                                                      | Marks |
|-----------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough knowledge of the types of inorganic characteristics present in soil | 3     |
| Links characteristics to the origins of the sample                                            |       |
| • Demonstrates a sound knowledge of the types of characteristics in soil                      |       |
| OR                                                                                            | 2     |
| • Gives a list of various characteristics and links them to the origins of the samples        |       |
| Identifies some characteristics of soil                                                       | 1     |

### Question 38 (b) (i)

| Criteria                                                                                                                                                                | Marks |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Identifies how accuracy and reliability make the sample admissible in court                                                                                           |       |
| • Demonstrates a thorough knowledge of precautions/ procedures necessary<br>in a forensic investigation and links them directly to the urine samples/<br>sample bottles | 3     |
| Relates procedures to accuracy and reliability                                                                                                                          |       |
| • Demonstrates a sound knowledge of procedures/precautions in a forensic investigation and links them to urine testing bottles                                          |       |
| OR                                                                                                                                                                      | 2     |
| • Identifies precautions procedures and relates them to accuracy or reliability required for admission in court                                                         |       |
| Identifies precautions or procedures                                                                                                                                    |       |
| OR                                                                                                                                                                      | 1     |
| Identifies a precaution/procedure and relates it to validity or reliability                                                                                             |       |

### Question 38 (b) (ii)

| Criteria                                                                                                                       | Marks |
|--------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul><li>Gives details of a recent case</li><li>Shows how a change in technology could advance/did change the verdict</li></ul> | 2     |
| • Shows how changes in technology can change the outcome of a forensic investigation                                           | 1     |

### Question 38 (c) (i)

| Criteria                    | Marks |
|-----------------------------|-------|
| Identifies correct pigment  | 2     |
| Gives a valid justification | 2     |
| Identifies correct pigment  |       |
| OR                          | 1     |
| Gives a valid justification |       |

### Question 38 (c) (ii)

| Criteria                                                                                           | Marks |
|----------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a thorough understanding of the relationship between the solvent and the separation | 3     |
| • Demonstrates a sound understanding of the relationship between the solvent and the separation    | 2     |
| Describes how a separation could be changed                                                        | 1     |

#### Question 38 (d) (i)

| Criteria                                                      | Marks |
|---------------------------------------------------------------|-------|
| Gives correct structural formula for all products             | 2     |
| Gives correct structural equation but omits water             |       |
| OR                                                            | 1     |
| • Gives structural formula with a small error; includes water |       |

### Question 38 (d) (ii)

| Criteria                                                                                                     | Marks |
|--------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a through knowledge of an appropriate chemical test                                           |       |
| Includes an equation                                                                                         | 3     |
| Identifies results for specified sugars                                                                      |       |
| • Demonstrates a sound knowledge of an appropriate chemical test; May state results for reducing sugars only | 2     |
| Identifies a suitable reagent                                                                                | 1     |



### Question 38 (e)

| Criteria                                                                                                                                            | Marks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • Demonstrates a clear and thorough understanding of the features of DNA that relate to forensic science                                            |       |
| • Provides a clear description of how the DNA molecule is manipulated                                                                               |       |
| • The molecular properties/features of DNA are linked to each manipulation involved in obtaining DNA profile                                        | 6–7   |
| Describes how non-coding DNA varies from person to person                                                                                           |       |
| • Demonstrates coherence and logical progression of ideas in a scientific manner                                                                    |       |
| Describes how DNA profiles are unique                                                                                                               |       |
| • Demonstrates a sound understanding of the features of DNA that relate to forensic science                                                         |       |
| • Some steps in the process of obtaining a DNA profile are described                                                                                | 4–5   |
| • Demonstrates a sound understanding of most factors linking the molecular properties/features of DNA to a step involved in obtaining a DNA profile | 4–3   |
| • States how a DNA profile allows for the identification of an individual                                                                           |       |
| • Demonstrates basic understanding of the features of DNA that relate to forensic science                                                           |       |
| • A step in the process of obtaining a DNA profile is described                                                                                     |       |
| • States how a DNA profile allows for the identification of a person                                                                                | 2–3   |
| OR                                                                                                                                                  |       |
| • Shows sound understanding of some factors linking the molecular properties/features of DNA to a step involved in obtaining a DNA profile          |       |
| Demonstrates a limited understanding of the features of DNA                                                                                         |       |
| OR                                                                                                                                                  |       |
| • A step in the process of obtaining a DNA profile is outlined                                                                                      | 1     |
| OR                                                                                                                                                  |       |
| • States how a DNA profile allows for the identification of a person                                                                                |       |

# **Chemistry** 2012 HSC Examination Mapping Grid

#### Section I Part A

| Question | Marks | Content                         | Syllabus outcomes |
|----------|-------|---------------------------------|-------------------|
| 1        | 1     | 9.4.5.2.1                       | H13               |
| 2        | 1     | 9.2.1.2.7                       | Н9                |
| 3        | 1     | 9.4.2.2.8                       | H8                |
| 4        | 1     | 9.3.4.3.3                       | H11               |
| 5        | 1     | 9.2.3.2.56                      | H9, H10           |
| 6        | 1     | 9.2.5.2.3                       | H6, H13           |
| 7        | 1     | 9.3.1.2.2                       | H13, H14          |
| 8        | 1     | 9.3.4.2.9                       | H8                |
| 9        | 1     | 9.4.4.2.5                       | Н6                |
| 10       | 1     | 9.4.3.3.1, 9.4.3.2.1, 9.4.3.3.4 | H12, H14          |
| 11       | 1     | 9.3.3.2.6                       | H8                |
| 12       | 1     | 9.4.4.2.9                       | H10               |
| 13       | 1     | 9.2.4.2.3                       | H8                |
| 14       | 1     | 9.2.4.3.4                       | H10               |
| 15       | 1     | 9.3.2.2.1, 9.3.2.2.2            | Н6                |
| 16       | 1     | 9.3.2.2.4                       | H12               |
| 17       | 1     | 9.2.3.2.7, 9.2.3.3.6            | H10, H12          |
| 18       | 1     | 9.3.3.2.6, 9.3.3.2.1, 9.3.3.3.4 | H12               |
| 19       | 1     | 9.3.4.3.3                       | H12               |
| 20       | 1     | 9.4.5.3.1/2                     | H12               |

#### Section I Part B

| Question | Marks | Content              | Syllabus outcomes |
|----------|-------|----------------------|-------------------|
| 21 (a)   | 2     | 9.3.5.2.4            | H10, H13          |
| 21 (b)   | 2     | 9.3.5.3.1            | H11               |
| 22 (a)   | 1     | 9.2.1.3.3, 9.2.1.2.6 | H10               |
| 22 (b)   | 2     | 9.2.1.3.3            | H2, H14           |
| 23       | 3     | 9.3.2.2.5, 9.3.2.2.4 | H8, H10           |
| 24       | 3     | 9.4.2.2.1            | H4                |
| 25       | 3     | 9.4.5.3.2            | H8                |
| 26 (a)   | 5     | 9.2.1.2.2, 9.2.3.3.2 | H10, H7           |
| 26 (b)   | 3     | 9.2.2.2.1, 9.2.3.2.8 | H4                |
| 27 (a)   | 2     | 9.2.5.2.6            | H12               |
| 27 (b)   | 1     | 9.2.5.2.6, 9.2.1.3.1 | H10, H13          |
| 28       | 3     | 9.3.3.2.5, 9.3.3.3.7 | H10, H12, H13     |

2012 HSC Chemistry Mapping Grid

| Question    | Marks | Content              | Syllabus outcomes   |
|-------------|-------|----------------------|---------------------|
| 29          | 5     | 9.4.4.2.1, 9.4.4.2.2 | H13                 |
| 30 (a)      | 2     | 9.3.4.3.3            | H10, H12            |
| 30 (b) (i)  | 3     | 9.3.4.3.3            | H10, H12            |
| 30 (b) (ii) | 1     | 9.2.3.2.3            | H8                  |
| 31 (a)      | 3     | 9.2.3.2.9, 9.3.5.2.3 | H13                 |
| 31 (b)      | 1     | 9.3.5.2.3            | H12                 |
| 31 (c)      | 1     | 9.3.5.2.3            | H8                  |
| 32          | 3     | 9.4.3.3.5            | H12, H14            |
| 33          | 6     | 9.2.4.3.3, 9.4.1.2.2 | H3, H4, H7, H8, H12 |

#### Section II

| Question       | Marks | Content                                                  | Syllabus outcomes |
|----------------|-------|----------------------------------------------------------|-------------------|
| Question<br>34 |       | Industrial Chemistry                                     |                   |
| (a)            | 3     | 9.5.4.3.1                                                | H7                |
| (b) (i)        | 1     | 9.5.2.2.2                                                | H10, H12          |
| (b) (ii)       | 3     | 9.5.2.3.3                                                | H10, H12          |
| (b) (iii)      | 1     | 9.5.2.2.3                                                | Н8                |
| (c) (i)        | 3     | 9.5.3.2.3                                                | H10, H14          |
| (c) (ii)       | 2     | 9.5.3.2.3, 9.5.3.2.7                                     | H7, H8            |
| (d) (i)        | 3     | 9.5.6.3.1                                                | H8, H10, H11      |
| (d) (ii)       | 2     | 9.5.6.3.1                                                | H12, H11          |
| (e)            | 7     | 9.5.5.2.1, 9.5.5.3.5, 9.5.5.2.5,<br>9.5.5.2.3, 9.5.5.2.6 | H3, H4, H9, H13   |
| Question<br>35 |       | Shipwrecks, Corrosion and<br>Conservation                |                   |
| (a)            | 3     | 9.6.7.2.2                                                | Н8                |
| (b) (i)        | 3     | 9.6.4.2.3                                                | Н8                |
| (b) (ii)       | 2     | 9.6.4.2.3, 9.6.4.3.4                                     | H3, H8            |
| (c) (i)        | 2     | 9.6.6.2.1, 9.6.6.2.2                                     | Н8                |
| (c) (ii)       | 3     | 9.6.6.2.2, 9.6.6.3.1                                     | H8, H10           |
| (d) (i)        | 1     | 9.6.3.3.1                                                | H11               |
| (d) (ii)       | 4     | 9.6.3.2.2, 9.6.3.3.1                                     | H11, H13          |
| (e)            | 7     | 9.6.2.2.3, 9.6.2.3.3, 9.6.4.2.1,<br>9.6.4.3.1            | H3, H4, H8, H13   |

| Question<br>36 |   | The Biochemistry of movement     |                |
|----------------|---|----------------------------------|----------------|
| (a)            | 3 | 9.7.5.2.2, 9.7.5.2.3             | Нб             |
| (b) (i)        | 1 | 9.7.3.2.1                        | Н9             |
| (b) (ii)       | 1 | 9.7.3.2.4                        | Н9             |
| (b) (iii)      | 3 | 9.7.3.2.2/3, 9.7.3.3.2           | H9, H8         |
| (c) (i)        | 1 | 9.7.3.2.6, 9.7.7.2.2             | H7, H9         |
| (c) (ii)       | 4 | 9.7.8.3.1, 9.7.6.2.2/3           | H7, H9, H13    |
| (d) (i)        | 3 | 9.7.4.2.3/4, 9.7.4.2.5           | Н6, Н9         |
| (d) (ii)       | 2 | 9.7.4.3.2                        | Н6, Н9         |
| (e)            | 7 | 9.7.7.3.1, 9.7.8.2.2, 9.7.10.2.1 | H4, H7, H8, H9 |
| Question<br>37 |   | The Chemistry of Art             |                |
| (a) (i)        | 1 | 9.8.4.2.3                        | Нб             |
| (a) (ii)       | 2 | 9.8.5.2.2/3/4, 9.8.5.3.1         | H6, H13        |
| (b) (i)        | 2 | 9.8.1.2.2                        | H8             |
| (b) (ii)       | 3 | 9.8.1.2.4, 9.8.1.2.5             | H8             |
| (c)            | 5 | 9.8.3.2.8, 9.8.3.3.1             | H6, H12c, H14  |
| (d) (i)        | 3 | 9.8.2.2.4, 9.8.4.3.2             | H6, H11        |
| (d) (ii)       | 2 | 9.8.4.3.1                        | Нб             |
| (e)            | 7 | 9.8.2.2.5, 9.8.2.3.4             | H2, H6         |
| Question 38    |   | Forensic Chemistry               |                |
| (a)            | 3 | 9.9.1.2.4                        | H14            |
| (b) (i)        | 3 | 9.9.1.2.1                        | H14            |
| (b) (ii)       | 2 | 9.9.1.2.5                        | H4             |
| (c) (i)        | 2 | 9.9.3.3.4                        | Нб             |
| (c) (ii)       | 3 | 9.9.3.3.4                        | H8             |
| (d) (i)        | 2 | 9.9.2.2.2                        | Н9             |
| (d) (ii)       | 3 | 9.9.2.3.1, 9.9.2.2.3             | H9, H11        |
| (e)            | 7 | 9.9.4                            | H4             |