

2012 HSC Engineering Studies Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	A
2	С
3	С
4	D
5	A
6	В
7	A
8	В
9	D
10	D

Section II

Question 11 (a)

Criteria	Marks
Describes use of rudder for turning AND twisting wing frame or redistribution of weight for banking	2
Describes use of rudder or twisting wing frame	
OR	1
Twisting wing frame or redistribution of weight for banking	

Question 11 (b)

Criteria	Marks
Discussion includes changes and developments (1902 to present) for both materials AND propulsion systems AND effects on aircraft performance	3
Discusses one change (materials OR propulsion) with a link to performance OR both without a link to performance	
OR	2
• Discusses materials AND propulsion with both linked to performance without a comparison (1902 to present)	
Refers only to changes in materials or propulsion systems with no effects on performance	
OR	1
• Discusses materials or propulsion AND performance without a comparison (1902 to present)	

Question 11 (c)

Criteria	Marks
Outlines both risk analysis AND future safety action/strategy	2
Outlines risk analysis OR future safety action	1

Question 11 (d)

Criteria	Marks
Identifies THREE relevant problems and justifies appropriate engineering solutions	3
 Identifies TWO relevant problems and justifies appropriate engineering solutions OR THREE problems with ONE appropriate engineering solution 	2
 Identifies ONE problem and justifies appropriate engineering solution OR TWO or THREE relevant problems with no appropriate engineering solutions 	1

Question 12 (a) (i)

Criteria	Marks
 Determines correct answer with correct load and compatible units 	1

Question 12 (a) (ii)

Criteria	Marks
Determines correct answer with compatible units	1

Question 12 (b)

Criteria	Marks
Names an appropriate material that could be used and justifies the choice	2
Names an appropriate material	
OR	1
Names AND justifies an inappropriate material suitable for a structure	

Question 12 (c) (i)

Criteria	Marks
Determines correct answers (magnitude and direction) or with a minor error	2
Demonstrates understanding of moments with errors or omissions	1

Question 12 (c) (ii)

Criteria	Marks
Determines correct answers (magnitude and nature) or with a minor error	2
Determines correct magnitude and incorrect nature	
OR	
Determines correct nature and incorrect magnitude	1
OR	
Determines correct cutting plane with some associated working	

Question 12 (d)

Criteria	Marks
States TWO suitable composites with TWO correct components for each composite	2
• States TWO suitable composites with minimum TWO correct components	
OR	
States TWO suitable composites with ONE correct component for each	1
OR	
States ONE suitable composite with TWO correct components	

Question 13 (a) (i)

Criteria	Marks
Calculates using a correct method OR with a minor error	2
Calculates using a correct method but with no conversion to km/h	
OR	1
Calculation using a correct method	

Question 13 (a) (ii) 1

Criteria	Marks
Correct calculation of power OR calculation with a minor mathematical error	1

Question 13 (a) (ii) 2

Criteria	Marks
Correct calculation of distance OR calculation with a minor mathematical error	1

Question 13 (b) (i)

Criteria	Marks
• Correctly identifies the most suitable type of glass and identifies a reason for the curved glass	2
• Identifies the most suitable type of glass OR gives a reason for curvature	1

Question 13 (b) (ii)

Criteria	Marks
• Compares the identified glass type, explaining why it is more suitable	2
Explains why the identified glass is suitable in windscreens with no comparison	1

Question 13 (c)

Criteria	Marks
Gives TWO correct reasons	2
Gives ONE correct reason	1

Question 14 (a)

Criteria	Marks
Provides detailed contrast	3
States a positive and a negative of each system	2
Shows some knowledge of both systems	
OR	1
Good knowledge of only one system	

Question 14 (b) (i)

Criteria	Marks
Determines correct answer or with minor error	3
Determines an answer using some incorrect values	2
Shows some knowledge of stress calculation	1

Question 14 (b) (ii)

Criteria	Marks
Determines correct answer with compatible units or with minor error	2
Determines an extension with minor error	1

Question 14 (c)

Criteria	Marks
Projects counterbore correctly, draws as half section	2
Draws half section with errors in hole details	
OR	1
Draws hole details correctly with full section, or no hatching	

Question 15 (a)

Criteria	Marks
Correctly indicates that high aspect ratio wings are more efficient with less drag for amount of lift produced	2
Correctly indicates that less drag for amount of lift with no reference to aspect ratio	1

Question 15 (b)

Criteria	Marks
• Identifies aileron, elevator and rudder (1 error) and states how three of them control flight	3
 Identifies aileron, elevator and rudder (at least 1) and states how two of them control flight OR States how three of them control flight 	2
Identifies aileron, elevator and rudder or states how one of them control flight	1

Question 15 (c)

Criteria	Marks
• Description including mould, fibres (fiberglass), thermosetting resin, application (with 1 omission)	2
• Description including mould, fibres (fibreglass), thermosetting resin, application (with 2 ommisions)	1

Question 15 (d)

Criteria	Marks
Calculating correct or one minor error	3
Two correct calculations or diagrams	2
One correct calculations and one diagram	
Shows some knowledge of forces involved	1

Question 15 (e)

Criteria	Marks
Drawing correct with correct standards or only minor errors	5
Drawing generally correct with correct standards with some minor errors and/or omissions	4
Drawing generally correct with major errors and/or omissions	3
Drawing generally correct with some major details	2
Drawing with some minor details evident	1

Question 16 (a)

Criteria	Marks
Details advantages gained through these changes	2
Shows some knowledge gained through these changes	1

Question 16 (b)

Criteria	Marks
Correctly describes the polymer coating process and identifies/names the suitable polymer	2
Correctly describes the polymer coating process	
OR	1
Correctly names a suitable polymer	

Question 16 (c)

Criteria	Marks
Provides a pictorial drawing in proportion AND correct shape	5
Provides a substantially correct pictorial drawing, mostly complete	4
Provides a pictorial drawing with several aspects correct	3
Provides a pictorial drawing with a few aspects correct	2
Provides a limited AND/OR incomplete pictorial sketch	1

Question 16 (d) (i)

Criteria	Marks
Correctly describes why demodulation is used in a radio system	2
Describes demodulation as separating information from a wave	1

Question 16 (d) (ii)

Criteria	Marks
Describes the demodulation process with reference to the circuit shown	2
Describes partially the demodulation process with reference to the diode OR capacitor	1

Question 16 (d) (iii)

Criteria	Marks
Correctly identifies the function of the coil and variable capacitor in the circuit shown	2
Identifies the function of only the coil in the circuit shown	
OR	1
• Identifies the function of only the variable capacitor in the circuit shown	

Section III

Question 17 (a)

Criteria	Marks
States appropriate considerations relating to location	2
States ONE appropriate consideration relating to location	
OR	1
States engineering considerations but not relating to location	

Question 17 (b)

Criteria	Marks
States purpose of flange to join trusses	1

Question 17(c)(i)

Criteria	Marks
Constructs correct SFD and BMD	2
Constructs ONE correct SFD or BMD	
OR	1
Constructs either SFD or BMD with incorrect values but correct shapes	

Question 17 (c) (ii)

Criteria	Marks
Describes correct change in shape to BMD	1

Question 17 (c) (iii)

Criteria			
Calculates bending stress using correct method or with minor error	2		
Calculates answer with incorrect order of units, or with minor errors in substitution OR	1		
• Calculates answer using axial stress formula (Stress = Load/Area)			

Question 17 (d)

Criteria	Marks
Gives reasons why the process is effective	
OR	2
Gives a reason with a detailed explanation	
Gives one reason why the process is effective	1

Question 18 (a)

Criteria	Marks
Gives reasons why engineering reports are effective for decision–making	2
Gives ONE reason indicating why reports are effective decision–making tools	1

Question 18 (b)

Criteria	Marks
Explains how intellectual property can be protected, giving several methods	3
Explains how intellectual property can be protected, giving a detailed method	
OR	2
Gives a basic explanation of one method and identifies another	
Identifies a way in which intellectual property can be protected	1

Question 18(c)(i)

Criteria	Marks
Names a principal alloying element	1

Question 18(c)(ii)

Criteria	Marks
Gives several reasons why engineers would choose this material	2
Gives a satisfactory reason from the list below	1

Question 18 (d)

Criteria	Marks
Applies appropriate formula to calculate correct answer for 1 or 2 pads	2
Calculates an answer or with minor error OR calculates correct frictional force	1

Engineering Studies

2012 HSC Examination Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	Materials	H2.1
2	1	Materials	H1.2
3	1	Materials	H1.2
4	1	Materials	H2.1
5	1	Mechanics	H3.1
6	1	Communication	Н3.3
7	1	Mechanics	H3.4
8	1	Communication	Н3.3
9	1	Electronics	H3.1
10	1	Mechanics	H3.1

Section II

Question	Marks	Content	Syllabus outcomes
11		Historical and Societal Influences, and the Scope of the Profession	
11 (a)	2	Historical and Society	H4.1
11 (b)	3	Machines and Materials	H41
11 (c)	2	Scope of profession	H5.2
11 (d)	3	Scope of profession and Social influence	H4.3
12		Civil Structures	
12 (a) (i)	1	Mechanics and Hydraulics	H3.1
12 (a) (ii)	1	Mechanics and Hydraulics	H3.1
12 (b)	2	Materials	H2.1
12 (c) (i)	2	Mechanics and Hydraulics	H3.1, H6.1
12 (c) (ii)	2	Mechanics and Hydraulics	H3.1, H6.1
12 (d)	2	Engineering Materials	H1.2, H2.1
13		Personal and Public Transport	
13 (a) (i)	2	Mechanics – energy	H3.1
13 (a) (ii) 1	1	Mechanics – power	H3.1
13 (a) (ii) 2	1	Mechanics – work	H3.1
13 (b) (i)	2	Materials – glasses	H2.1
13 (b) (ii)	2	Materials – glasses	H1.2
13 (c)	2	Electricity	H2.1
14		Lifting Devices	

Question	Marks	Content	Syllabus outcomes
14 (a)	3	Mechanics, Materials, Electricity	H1.2, H2.1
14 (b) (i)	3	Mechanics	H3.1
14 (b) (ii)	2	Mechanics and Materials	H3.1
14 (c)	2	Communication	H3.1
15		Aeronautical Engineering	
15 (a)	2	Mechanics	H2.2
15 (b)	3	Mechanics	H2.2
15 (c)	2	Materials	H1.2
15 (d)	3	Mechanics	H3.1
15 (e)	5	Communication	H3.2
16		Telecommunication	
16 (a)	2	Electricity/Electronics	H4.1
16 (b)	2	Materials	H1.2
16 (c)	5	Communication	Н3.3
16 (d) (i)	2	Electricity/Electronics	H1.2
16 (d) (ii)	2	Electricity and Materials	H1.2
16 (d) (iii)	2	Electricity/Electronics	H1.2

Section III

Question	Marks	Content	Syllabus outcomes
17		Engineering and the Engineering Report	
17 (a)	2	Communication	H6.1
17 (b)	1	Scope of the profession	H6.1
17 (c) (i)	2	Mechanics	H3.1
17 (c) (ii)	1	Mechanics	H3.1
17 (c) (iii)	2	Mechanics	H3.1
17 (d)	2	Materials	H1.2, H2.1
18		Engineering and the Engineering Report	
18 (a)	2	Engineering Report	H4.3, H5.2
18 (b)	3	Engineering Report	H1.1, H4.3
18 (c) (i)	1	Materials	H2.1, H1.2
18 (c) (ii)	2	Materials	H2.1, H1.2
18 (d)	2	Materials	Н3.1