

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–14, show relevant mathematical reasoning and/or calculations

Total marks – 70

Section I Pages 2–5

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 6–13

60 marks

- Attempt Questions 11–14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 The points A, B and C lie on a circle with centre O, as shown in the diagram. The size of $\angle ACB$ is 40°.

What is the size of $\angle AOB$?

- (A) 20°
- (B) 40°
- (C) 70°
- (D) 80°

2 Which expression is equal to $\cos x - \sin x$?

(A)
$$\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)$$

(B) $\sqrt{2}\cos\left(x-\frac{\pi}{4}\right)$
(C) $2\cos\left(x+\frac{\pi}{4}\right)$
(D) $2\cos\left(x-\frac{\pi}{4}\right)$

3 What is the constant term in the binomial expansion of $\left(2x - \frac{5}{x^3}\right)^{12}$?

(A)
$$\binom{12}{3} 2^9 5^3$$

(B) $\binom{12}{9} 2^3 5^9$
(C) $-\binom{12}{3} 2^9 5^3$
(D) $-\binom{12}{9} 2^3 5^9$

- 4 The acute angle between the lines 2x + 2y = 5 and y = 3x + 1 is θ . What is the value of $\tan \theta$?
 - (A) $\frac{1}{7}$
 - (B) $\frac{1}{2}$
 - (C) 1
 - (D) 2
- 5 Which group of three numbers could be the roots of the polynomial equation $x^3 + ax^2 41x + 42 = 0$?
 - (A) 2, 3, 7
 - (B) 1, -6, 7
 - (C) -1, -2, 21
 - (D) -1, -3, -14

6 What is the derivative of $3\sin^{-1}\frac{x}{2}$?

(A)
$$\frac{6}{\sqrt{4-x^2}}$$

(B) $\frac{3}{\sqrt{4-x^2}}$
(C) $\frac{3}{2\sqrt{4-x^2}}$
(D) $\frac{3}{4\sqrt{4-x^2}}$

7 A particle is moving in simple harmonic motion with period 6 and amplitude 5.Which is a possible expression for the velocity, *v*, of the particle?

(A)
$$v = \frac{5\pi}{3} \cos\left(\frac{\pi}{3}t\right)$$

(B) $v = 5\cos\left(\frac{\pi}{3}t\right)$
(C) $v = \frac{5\pi}{6}\cos\left(\frac{\pi}{6}t\right)$
(D) $v = 5\cos\left(\frac{\pi}{6}t\right)$

- 8 In how many ways can 6 people from a group of 15 people be chosen and then arranged in a circle?
 - (A) $\frac{14!}{8!}$ (B) $\frac{14!}{8!6}$ (C) $\frac{15!}{9!}$ (D) $\frac{15!}{9!6}$
- 9 The remainder when the polynomial $P(x) = x^4 8x^3 7x^2 + 3$ is divided by $x^2 + x$ is ax + 3.

What is the value of *a*?

- (A) –14
- (B) –11
- (C) –2
- (D) 5
- 10 Which equation describes the locus of points (x, y) which are equidistant from the distinct points (a + b, b a) and (a b, b + a)?
 - (A) bx + ay = 0
 - (B) bx + ay = 2ab
 - (C) bx ay = 0
 - (D) bx ay = 2ab

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Solve
$$\left(x + \frac{2}{x}\right)^2 - 6\left(x + \frac{2}{x}\right) + 9 = 0$$
. 3

(b) The probability that it rains on any particular day during the 30 days of **2** November is 0.1.

Write an expression for the probability that it rains on fewer than 3 days in November.

(c) Sketch the graph
$$y = 6 \tan^{-1} x$$
, clearly indicating the range. 2

(d) Evaluate
$$\int_{2}^{5} \frac{x}{\sqrt{x-1}} dx$$
 using the substitution $x = u^{2} + 1$. 3

(e) Solve
$$\frac{x^2 + 5}{x} > 6$$
. 3

(f) Differentiate
$$\frac{e^x \ln x}{x}$$
. 2

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) A particle is moving in simple harmonic motion about the origin, with displacement x metres. The displacement is given by $x = 2 \sin 3t$, where t is time in seconds. The motion starts when t = 0.
 - (i) What is the total distance travelled by the particle when it first returns **1** to the origin?
 - (ii) What is the acceleration of the particle when it is first at rest? 2
- (b) The region bounded by $y = \cos 4x$ and the x-axis, between x = 0 and $x = \pi$, 3 is rotated about the x-axis to form a solid.

Find the volume of the solid.

(c) A particle moves along a straight line with displacement x m and 3 velocity v m s⁻¹. The acceleration of the particle is given by

$$\ddot{x} = 2 - e^{-\frac{x}{2}}.$$

Given that v = 4 when x = 0, express v^2 in terms of x.

Question 12 continues on page 8

Question 12 (continued)

(d) Use the binomial theorem to show that

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + \binom{-1}{n}\binom{n}{n}.$$

(e) The diagram shows the graph of a function f(x).

The equation f(x) = 0 has a root at $x = \alpha$. The value x_1 , as shown in the diagram, is chosen as a first approximation of α .

A second approximation, x_2 , of α is obtained by applying Newton's method once, using x_1 as the first approximation.

Using a diagram, or otherwise, explain why x_1 is a closer approximation of α than x_2 .

(f) Milk taken out of a refrigerator has a temperature of 2° C. It is placed in a room of constant temperature 23° C. After *t* minutes the temperature, T° C, of the milk is given by

$$T = A - Be^{-0.03t},$$

where A and B are positive constants.

How long does it take for the milk to reach a temperature of 10°C?

End of Question 12

1

3

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) Use mathematical induction to prove that $2^n + (-1)^{n+1}$ is divisible by 3 for all **3** integers $n \ge 1$.
- (b) One end of a rope is attached to a truck and the other end to a weight. The rope passes over a small wheel located at a vertical distance of 40 m above the point where the rope is attached to the truck.

The distance from the truck to the small wheel is L m, and the horizontal distance between them is x m. The rope makes an angle θ with the horizontal at the point where it is attached to the truck.

The truck moves to the right at a constant speed of 3 m s^{-1} , as shown in the diagram.

Question 13 continues on page 10

Question 13 (continued)

(c) The point $P(2at, at^2)$ lies on the parabola $x^2 = 4ay$ with focus S.

The point Q divides the interval PS internally in the ratio $t^2:1$.

(i) Show that the coordinates of Q are
$$x = \frac{2at}{1+t^2}$$
 and $y = \frac{2at^2}{1+t^2}$. 2

1

(ii) Express the slope of
$$OQ$$
 in terms of t .

(iii) Using the result from part (ii), or otherwise, show that Q lies on a fixed 3 circle of radius a.

Question 13 continues on page 11

(d) In the diagram, AB is a diameter of a circle with centre O. The point C is chosen such that $\triangle ABC$ is acute-angled. The circle intersects AC and BC at P and Q respectively.

Copy or trace the diagram into your writing booklet.

(i)	Why is $\angle BAC = \angle CQP$?	1
	· ~	

(ii) Show that the line OP is a tangent to the circle through P, Q and C. 2

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) The take-off point *O* on a ski jump is located at the top of a downslope. The angle between the downslope and the horizontal is $\frac{\pi}{4}$. A skier takes off from *O* with velocity $V \text{ m s}^{-1}$ at an angle θ to the horizontal, where $0 \le \theta < \frac{\pi}{2}$. The skier lands on the downslope at some point *P*, a distance *D* metres from *O*.

The flight path of the skier is given by

$$x = Vt\cos\theta$$
, $y = -\frac{1}{2}gt^2 + Vt\sin\theta$, (Do NOT prove this.)

where *t* is the time in seconds after take-off.

(i) Show that the cartesian equation of the flight path of the skier is given by 2

$$y = x \tan \theta - \frac{gx^2}{2V^2} \sec^2 \theta$$

(ii) Show that
$$D = 2\sqrt{2} \frac{V^2}{g} \cos\theta (\cos\theta + \sin\theta)$$
. 3

(iii) Show that
$$\frac{dD}{d\theta} = 2\sqrt{2} \frac{V^2}{g} (\cos 2\theta - \sin 2\theta).$$
 2

(iv) Show that *D* has a maximum value and find the value of θ for which this occurs. 3

Question 14 continues on page 13

Question 14 (continued)

(b) Two players A and B play a game that consists of taking turns until a winner is determined. Each turn consists of spinning the arrow on a spinner once. The spinner has three sectors P, Q and R. The probabilities that the arrow stops in sectors P, Q and R are p, q and r respectively.

The rules of the game are as follows:

- If the arrow stops in sector *P*, then the player having the turn wins.
- If the arrow stops in sector Q, then the player having the turn loses and the other player wins.
- If the arrow stops in sector *R*, then the other player takes a turn.

Player *A* takes the first turn.

- (i) Show that the probability of player A winning on the first or the second turn of the game is (1 r)(p + r).
- (ii) Show that the probability that player A eventually wins the game is **3**

$$\frac{p+r}{1+r}$$

End of paper

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \cot x = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE :
$$\ln x = \log_e x, \quad x > 0$$