

2014 HSC Mathematics Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	А
2	В
3	D
4	С
5	В
6	D
7	В
8	С
9	А
10	D

Section II

Question 11 (a)

	Criteria	Marks
•	Provides a correct answer	2
•	Attempts to use $\sqrt{5} + 2$, or equivalent merit	1

Sample answer:

$$\frac{1}{\sqrt{5-2}} = \frac{\sqrt{5+2}}{(\sqrt{5}-2)(\sqrt{5}+2)} = \frac{\sqrt{5+2}}{5-4} = \sqrt{5+2}$$

Question 11 (b)

	Criteria	Marks
•	Provides a correct answer	2
•	Finds product of the form $(3x + a)(x + b)$, or equivalent merit	1

Sample answer:

$$3x^2 + x - 2 = (3x - 2)(x + 1)$$

Question 11 (c)

	Criteria	Marks
•	Finds correct derivative	2
•	Attempts to use quotient rule, or equivalent merit	1

$$y = \frac{x^3}{x+1}$$
$$\frac{dy}{dx} = \frac{3x^2(x+1) - x^3}{(x+1)^2} = \frac{(2x+3)x^2}{(x+1)^2}$$

Question 11 (d)

	Criteria	Marks
•	Finds correct primitive	2
•	Writes integral in the form $\int (x+3)^{-2} dx$, or equivalent merit	1

Sample answer:

$$\int \frac{1}{(x+3)^2} dx = \int (x+3)^{-2} dx$$
$$= -(x+3)^{-1} + C$$

Question 11 (e)

ſ	Criteria	Marks
	Provides a correct solution	3
	Finds a correct primitive	2
	• Finds a primitive of the form $a\cos\frac{x}{2}$, or equivalent merit	1

$$\int_{0}^{\frac{\pi}{2}} \sin \frac{x}{2} dx = \left[-2\cos \frac{x}{2} \right]_{0}^{\frac{\pi}{2}}$$
$$= -2\cos \frac{\pi}{4} + 2\cos 0$$
$$= -\sqrt{2} + 2$$
$$= 2 - \sqrt{2}$$

Question 11 (f)

	Criteria	Marks
•	Finds the correct equation for the curve	2
•	Finds a correct primitive for $4x - 5$, or equivalent merit	1

Sample answer:

$$f'(x) = 4x - 5$$

$$f(x) = 2x^{2} - 5x + C$$

$$3 = f(2) = 8 - 10 + C \text{ (using that the curve passes through (2,3))}$$

$$\therefore C = 5$$

$$f(x) = 2x^{2} - 5x + 5$$

Question 11 (g)

	Criteria	Marks
•	Finds the correct perimeter	2
•	Finds the length of the circular arc, or equivalent merit	1

Arc length:

$$l = r\theta$$

$$= 8 \times \frac{\pi}{7} = \frac{8\pi}{7}$$
Perimeter = $\left(8 + 8 + \frac{8\pi}{7}\right)$ cm
$$= \left(16 + \frac{8\pi}{7}\right)$$
 cm

Question 12 (a)

	Criteria	Marks
•	Finds the correct value	2
•	Finds the number of terms in the series, or equivalent merit	1

Sample answer:

 $2 + 5 + 8 + \dots + 1094$ $T_n = 2 + 3(n - 1)$ 1094 = 2 + 3(n - 1)1092 = 3(n - 1)n = 364 + 1 = 365 $S_n = \frac{n}{2}(a + l)$ $S_{365} = \frac{365}{2}(2 + 1094)$ = 200020

Question 12 (b) (i)

	Criteria	Marks
•	Provides a correct solution	2
•	Finds the slope of AC, or equivalent merit	1

$$\frac{y-4}{x-0} = \frac{1-4}{6-0}$$

6y-24 = -3x
3x+6y-24 = 0
x+2y-8 = 0

Question 12 (b) (ii)

	Criteria	Marks
•	Provides a correct solution	2
•	Attempts to use an appropriate formula, or equivalent merit	1

Sample answer:

Perpendicular distance =

$$e = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$
$$e = \frac{|3 + 2 \times 0 - 8|}{\sqrt{a^2 + b^2}}$$

perpendicular distance
$$= \frac{15 + 2 \times 6 - 6}{\sqrt{1^2 + 2^2}}$$
$$= \frac{5}{\sqrt{5}}$$
$$= \sqrt{5}$$

Question 12 (b) (iii)

	Criteria	Marks
•	Finds the correct area	2
•	Finds the length of AC, or equivalent merit	1

Area =
$$\frac{1}{2}$$
base × height
base = $AC = \sqrt{(6-0)^2 + (1-4)^2}$
= $\sqrt{36+9}$
= $\sqrt{45}$
= $3\sqrt{5}$
Height is $\sqrt{5}$ (from part (ii))
Area = $\frac{1}{2} \times 3\sqrt{5} \times \sqrt{5}$
= $\frac{15}{2}$

Question 12 (c) (i)

	Criteria	Marks
•	• Draws a correct diagram, including probability on each branch	2
•	• Draws a correct tree diagram	1

Sample answer:

Question 12 (c) (ii)

Criteria	Marks
Finds the correct probability	1

$$P(rg) + P(gr) = \frac{5}{19} \cdot \frac{14}{18} + \frac{14}{19} \cdot \frac{5}{18}$$
$$= \frac{70}{171}$$

Question 12 (d) (i)

	Criteria	Marks
•	Finds the correct <i>x</i> –coordinate	1

Sample answer:

y values are equal at A

 $2x = -2x^{2} + 8x$ $2x^{2} - 6x = 0$ 2x(x - 3) = 0x = 0 or x = 3

The *x* coordinate of point *A* is 3 (since x = 0 corresponds to point *0*).

Question 12 (d) (ii)

	Criteria	Marks
•	Finds the correct area	3
•	Finds a correct expression for the area, and attempts to evaluate it	2
•	Attempts to express the area as a difference, or equivalent merit	1

Sample answer:

Area is below the parabola but above line, so

Area =
$$\int_{0}^{3} (-2x^{2} + 8x) - 2x \, dx$$

= $\int_{0}^{3} -2x^{2} + 6x \, dx$
= $\left[\frac{1}{2x^{3}} + 3x^{2}\right]_{0}^{3}$
= $-18 + 27$
= 9 units²

Question 13 (a) (i)

	Criteria	Marks
•	Finds the correct derivative	1

Sample answer:

 $y = 3 + \sin 2x$ $\frac{dy}{dx} = 2\cos 2x$

Question 13 (a) (ii)

Criteria	Marks
Finds a correct primitive	2
• Finds a primitive of the form $a \log f(x)$, or equivalent merit	1

$$\int \frac{\cos 2x}{3 + \sin 2x} dx = \frac{1}{2} \int \frac{2 \cos 2x}{3 + \sin 2x} dx$$

This is of the form $\frac{f'(x)}{f(x)}$ with $f(x) = 3 + \sin 2x$.

Hence,
$$\int \frac{\cos 2x}{3 + \sin 2x} dx = \frac{1}{2} \ln(3 + 2\sin x) + c.$$

Question 13 (b) (i)

	Criteria	Marks
•	Provides a correct solution	1

Sample answer:

$$M = Ae^{-kt}$$
$$\frac{dM}{dt} = -kAe^{-kt}$$
$$= -kM$$

Question 13 (b) (ii)

	Criteria	Marks
•	Provides a correct solution	3
•	Finds the value of k, or equivalent merit	2
•	Finds the value of A, or equivalent merit	1

Sample answer:

When t = 0, M = 20 $20 = Ae^{-k0} = A$ $\therefore M = 20e^{-kt}$ When t = 300, M = 10 $10 = 20e^{-300k}$ $\frac{1}{2} = e^{-300k}$ $-300k = \log \frac{1}{2} = -\log 2$ $k = \frac{\log 2}{300}$ When t = 1000 $M = 20e^{-1000k}$ $= 20e^{-\frac{10}{3}\log 2}$ = 1.984...

: The amount remaining after 1000 years is approximately 1.98 kg

Question 13 (c) (i)

	Criteria	Marks
•	Provides a correct solution	2
•	Finds $\frac{dx}{dt}$, or equivalent merit	1

Sample answer:

$$v = \frac{dx}{dt} = 1 + \frac{1}{(1+t)^2}$$
$$a = \frac{d^2x}{dt^2} = -\frac{2}{(1+t)^3}$$
$$< 0 \text{ as } (1+t)^3 > 0 \text{ for } t \ge 0.$$

Question 13 (c) (ii)

	Criteria	Marks
•	Finds the correct value	1

Sample answer:

$$\lim_{t \to \infty} \left(1 + \frac{1}{(1+t)^2} \right)$$

= 1 since $\frac{1}{(1+t)^2} \to 0$ as $t \to \infty$

velocity $\rightarrow 1$ as *t* becomes large.

Question 13 (d) (i)

	Criteria	Marks
•	Provides a correct solution	2
•	• Attempts to apply the cosine rule, or equivalent merit	1

Sample answer:

 $\angle ABS = 78^{\circ}$ (parallel lines, alternate angles are equal) $\angle SBC = 191^{\circ} - 180^{\circ} = 11^{\circ}$ $\therefore \angle ABC = 78^{\circ} - 11^{\circ} = 67^{\circ}$ Using Cosine rule,

 $AC^{2} = 142^{2} + 220^{2} - 2 \times 142 \times 220 \times \cos 67^{\circ}$ = 44151.119... $\therefore AC = \sqrt{44151.19} \dots$ = 210.121... = 210 km (approximately)

$Question \ 13 \ (d) \ (ii)$

	Criteria	Marks
•	Finds the correct bearing	3
•	Finds angle $\angle ACB$ or $\angle CAB$, or equivalent merit	2
•	Attempts to use the sine or cosine rule to find $\angle ACB$ or $\angle CAB$, or equivalent merit	1

Sample answer:

Using Sine Rule,

$$\frac{\sin 67^{\circ}}{AC} = \frac{\sin \theta}{142}$$

$$\sin \theta = \frac{\sin 67^{\circ} \times 142}{210.12\cdots}$$

$$= 0.6220\cdots$$

$$\therefore \theta = \sin^{-1} (0.622\cdots)$$

$$= 38^{\circ}28'$$

$$\angle NCB = 11^{\circ} \text{ (parallel lines, alternate to } \angle SBC\text{)}$$

$$\therefore \angle NCA = 38^{\circ}28' - 11$$

$$= 27^{\circ}28'$$

$$\therefore \text{ Bearing} = 360^{\circ} - 27^{\circ}28'$$

$$= 332^{\circ}32'$$

$$\approx 333^{\circ}$$

Question 14 (a)

	Criteria	Marks
•	Provides a correct solution	3
•	Finds the coordinates of the stationary point, or equivalent merit	2
•	Finds the correct derivative, or equivalent merit	1

Sample answer:

$$y = e^{x} - ex$$

$$\frac{dy}{dx} = e^{x} - e$$
At stationary point $\frac{dy}{dx} = 0$

$$0 = e^{x} - e$$

$$e^{x} = e$$

$$x = 1$$

$$y = e - e \times 1 = 0$$
(1,0) is stationary point.

Determine nature:

$$\frac{d^2 y}{dx^2} = e^x$$

at $x = 1$, $\frac{d^2 y}{dx^2} = e > 0$ (cu)

So (1,0) is a minimum stationary point.

Question 14 (b) (i)

Criteria	Marks
Provides the correct answer	1

Sample answer:

$$\alpha + \beta = \frac{-8}{2} = -4$$

Question 14 (b) (ii)

Criteria	Marks
Provides a correct solution	2
• Finds the value of $\alpha\beta$, or equivalent merit	1

Sample answer:

$$6 = \alpha^{2}\beta + \alpha\beta^{2}$$
$$= \alpha\beta(\alpha + \beta)$$
$$= \alpha\beta(-4)$$
$$\alpha\beta = \frac{-3}{2}$$
But, $\alpha\beta = \frac{k}{2}$
$$\therefore \qquad \frac{k}{2} = -\frac{3}{2}$$

k = -3

Question 14 (c)

	Criteria	Marks
•	Provides a correct solution	3
•	Writes the volume as an integral, and attempts to find a primitive, or equivalent merit	2
•	Attempts to finds an integral for the volume, or equivalent merit	1

Question 14 (d) (i)

Criteria	Marks
Provides the correct answer	1

Sample answer:

$$10 + \frac{1}{3}(10) = 10 + \frac{10}{3}$$

Question 14 (d) (ii)

	Criteria	Marks
•	Provides a correct solution	2
•	Recognises a geometric series, or equivalent merit	1

Sample answer:

Amount remaining after many doses is $10 + \frac{10}{3} + 10\left(\frac{1}{3}\right)^2 + \cdots$

Limiting sum is $\frac{10}{1-\frac{1}{3}} = 15$. Amount in body is no more than 15 mL.

Question 14 (e)

	Criteria	Marks
•	Correctly sketches the graph	3
•	Sketches graph of the derivative correct at $x = 3$ and $x = -2$, or equivalent merit	2
•	Sketches a graph of the derivative correct at $x = 3$, or equivalent merit	1

Question 15 (a)

	Criteria	Marks
•	Provides a correct solution	3
•	Finds two correct solutions of the equation	2
•	Obtains a quadratic in cos x, or equivalent merit	1

Sample answer:

$$2\sin^{2} x + \cos x - 2 = 0$$

$$2(1 - \cos^{2} x) + \cos x - 2 = 0$$

$$-2\cos^{2} x + \cos x = 0$$

$$\cos x (1 - 2\cos x) = 0$$

$$\cos x = 0 \quad \text{or} \quad 1 - 2\cos x = 0$$

$$x = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \qquad \cos x = \frac{1}{2}$$

$$x = \frac{\pi}{3} \text{ or } \frac{5\pi}{3}$$

Solutions are $\frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{3}, \frac{5\pi}{3}$.

Question 15 (b) (i)

	Criteria	Marks
•	Provides a correct proof	2
•	Establishes one pair of equal angles, or equivalent merit	1

Sample answer:

RS || FE so $\angle DSR = \angle DEF$ (corresponding angles)

Also $\angle RDS = \angle FDE$ (common angle)

so ΔDEF and ΔDSR are similar (equiangular)

Question 15 (b) (ii)

	Criteria	Marks
• P	Provides a correct explanation	1

Sample answer:

$$\frac{DR}{DF} = \frac{DS}{DE}$$
$$= \frac{DS}{DS + SE} = \frac{x}{x + y}$$

Question 15 (b) (iii)

	Criteria	Marks
•	Provides a correct solution	2
•	Uses expressions for the area of triangles, or equivalent merit	1

$$A_{1} = \frac{1}{2}DR \times DS \sin D \quad (\text{using area formula: } A = \frac{1}{2}ab\sin C)$$
$$A = \frac{1}{2}DF \times DE \sin D$$
$$\frac{A_{1}}{A} = \frac{DR}{DF} \times \frac{DS}{DE}$$
$$= \frac{x}{x+y} \times \frac{x}{x+y} = \left(\frac{x}{x+y}\right)^{2}$$
$$\sqrt{\frac{A_{1}}{A}} = \frac{x}{x+y}$$

Question 15 (b) (iv)

	Criteria	Marks
•	Provides a correct solution	2
•	Observes that $\triangle DEF$ and $\triangle SEQ$ are similar, or equivalent merit	1

Sample answer:

$$\Delta SEQ \text{ is similar to } \Delta DEF \text{ and as in (iii) } \sqrt{\frac{A_2}{A}} = \frac{y}{x+y}$$

Hence $\sqrt{\frac{A_1}{A}} + \sqrt{\frac{A_2}{A}} = \frac{x}{x+y} + \frac{y}{x+y}$
= 1
Thus $\sqrt{A_1} + \sqrt{A_2} = \sqrt{A}$.

Question 15 (c) (i)

Criteria	Marks
Draws a correct sketch	1

Question 15 (c) (ii)

	Criteria		
•	Finds the coordinates of P	3	
•	Attempts to solve relevant simultaneous equations, or equivalent merit	2	
•	Attempts to use the fact that P lies on both curves, or equivalent merit	1	

Sample answer:

At *P* the *y*-values of the line and the curve coincide:

$$y = mx = e^{2x} \qquad (1$$

At P the slopes of the line and the tangent to the curve coincide:

$$m = \frac{d}{dx}e^{2x} = 2e^{2x} \qquad (2)$$

Substitute (1) into (2):

$$m = 2mx$$

$$1 = 2x$$

$$x = \frac{1}{2}$$

P lies on the curve, so $y = e^{2 \times \frac{1}{2}} = e$.

The coordinates of P are $\left(\frac{1}{2}, e\right)$.

Question 15 (c) (iii)

	Criteria	Marks
•	Finds the value of m	1

At P,
$$mx = e^{2x}$$

Using $x = \frac{1}{2}$ from (ii)
 $m = 2e^{2 \times \frac{1}{2}}$
 $= 2e$

Question 16 (a)

	Criteria		
•	Provides a correct solution	3	
•	Correctly evaluates function values and uses them in Simpson's rule, or equivalent merit	2	
•	Identifies suitable function values, or equivalent merit	1	

Sample answer:

Consider the following table of values of sec *x*.

X	$\left \frac{-\pi}{3}\right $	$\frac{-\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$
cosx	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
sec x	2	$\frac{2}{\sqrt{3}}$	1	$\frac{2}{\sqrt{3}}$	2

Using Simpson's rule π

$$\int_{\frac{-\pi}{3}}^{\frac{\pi}{3}} \sec x \, dx \approx \frac{1}{3} \frac{\pi}{6} \left(\sec\left(\frac{-\pi}{3}\right) + 4 \sec\left(\frac{-\pi}{6}\right) + 2 \sec 0 + 4 \sec\left(\frac{\pi}{6}\right) + \sec\left(\frac{\pi}{3}\right) \right)$$
$$= \frac{\pi}{18} \left(2 + \frac{8}{\sqrt{3}} + 2 + \frac{8}{\sqrt{3}} + 2 \right)$$
$$= \frac{\pi}{18} \left(6 + \frac{16}{\sqrt{3}} \right)$$
$$= \frac{\pi}{9} \left(3 + \frac{8}{\sqrt{3}} \right)$$

Question 16 (b) (i)

	Criteria		
•	Provides a complete explanation	2	
•	Explains the meaning of one term, or equivalent merit	1	

Sample answer:

Start	1st month	500
End	1st month (add interest)	500 (1.003)
Start	2nd month (add principal)	500 (1.003) + 500 (1.01)
End	2nd month (add interest)	[500(1.003) + 500(1.01)] 1.003
		$= 500 (1.003)^2 + 500 (1.01) (1.003)$

Question 16 (b) (ii)

	Criteria		
•	Provides a correct solution	3	
•	Finds a relevant geometric series, or equivalent merit	2	
•	Attempts to find an expression for the balance, or equivalent merit	1	

Sample answer:

At the end of the 3rd month we have

 $500 (1.003)^3 + 500 (1.01) (1.003)^2 + 500 (1.01)^2 (1.003)$

Following the pattern, at end of 60th month

$$B = 500 (1.003)^{60} + 500 (1.01) (1.003)^{59} + \dots + 500 (1.01)^{59} (1.003)$$

= 500 (1.003)^{60} + 500 (1.003)^{60} $\frac{1.01}{1.003} + \dots + 500 (1.003)^{60} \left(\frac{1.01}{1.003}\right)^{59}$
= 500 (1.003)^{60} $\left(1 + \frac{1.01}{1.003} + \left(\frac{1.01}{1.003}\right)^2 + \dots + \left(\frac{1.01}{1.003}\right)^{59}\right)$
= 500 (1.003)^{60} $\frac{\left(\frac{1.01}{1.003}\right)^{60} - 1}{\frac{1.01}{1.003} - 1}$
= 44404.378 ...

Question 16 (c) (i)

	Criteria		
•	Provides a correct solution	2	
•	Finds an expression for the length of the frame, or equivalent merit	1	

Sample answer:

Length of semi-circle = $\pi \times \frac{x}{2} = \frac{\pi x}{2}$

Perimeter of rectangle = 2x + 2y

Length of material used:

$$10 = 2x + 2y + \frac{\pi x}{2}$$
$$5 = x + y + \frac{\pi x}{4}$$
$$y = 5 - x \left(1 + \frac{\pi}{4}\right)$$

Question 16 (c) (ii)

	Criteria		
•	Provides a correct solution	2	
•	Attempts to relate area of glass and the amount of light, or equivalent merit	1	

Area of semicircle
$$=\frac{1}{2}\pi \left(\frac{x}{2}\right)^2$$
 m² $=\frac{\pi x^2}{8}$ m²
Area of rectangle $=xy$ m²
Amount of light coming through $=\left[1\left(\frac{\pi x^2}{8}\right)+3(xy)\right]$ units
ie $L = 3xy + \frac{\pi x^2}{8}$
 $= 3x\left(5-x-\frac{\pi x}{4}\right)+\frac{\pi x^2}{8}$
 $= 15x-3x^2-\frac{3\pi x^2}{4}+\frac{\pi x^2}{8}$
 $= 15x-x^2\left(3+\frac{5\pi}{8}\right)$

Question 16 (c) (iii)

	Criteria		
•	Provides a correct solution	3	
•	Justifies the x value is a maximum, or finds y, or equivalent merit	2	
•	Finds the x value of the stationary point, or equivalent merit	1	

Sample answer:

At maximum stationary point, $\frac{dL}{dx} = 0$

$$\frac{dL}{dx} = 15 - 2x\left(3 + \frac{5\pi}{8}\right) = 0$$

$$15 = 2x\left(3 + \frac{5\pi}{8}\right)$$

$$x = \frac{15}{2\left(3 + \frac{5\pi}{8}\right)}$$

$$\frac{d^2L}{dt^2} = -2\left(3 + \frac{5\pi}{8}\right) < 0$$
so $x = \frac{15}{2\left(3 + \frac{5\pi}{8}\right)}$ gives maximum.

Exact value

$$y = 5 - \left(\frac{15}{2\left(3 + \frac{5\pi}{8}\right)}\right) \left(1 + \frac{\pi}{4}\right)$$

Decimal approximation for $y \doteq 2.30$

$$x \doteqdot 1.51$$

Mathematics 2014 HSC Examination Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	1.1	Р3
2	1	4.2	Р5
3	1	12.3	НЗ
4	1	12.5	H3, H5
5	1	6.2	P4
6	1	1.3	Р3
7	1	5.2	Н5
8	1	7.3	Н5
9	1	10.1, 10.3, 14.3	Н5, Н7
10	1	3.3	Н5

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	2	1.1	Р3
11 (b)	2	1.3	Р3
11 (c)	2	8.8	P7, P8
11 (d)	2	11.2	Н5, Н8
11 (e)	3	13.7	Н5, Н8
11 (f)	2	10.8, 8.6	P6, H5, P8
11 (g)	2	13.1	Н5
12 (a)	2	7.1	Н5
12 (b) (i)	2	6.2	P4
12 (b) (ii)	2	6.5	P4
12 (b) (iii)	2	6.8	H2
12 (c) (i)	2	3.3	Н5
12 (c) (ii)	1	3.3	Н5
12 (d) (i)	1	1.4	P4
12 (d) (ii)	3	11.4	H8

Question	Marks	Content	Syllabus outcomes
13 (a) (i)	1	13.7	Н5
13 (a) (ii)	2	11.2, 12.5, 13.7	H3, H5
13 (b) (i)	1	14.2	H3, H4
13 (b) (ii)	3	14.2	H3, H4
13 (c) (i)	2	14.3	Н5
13 (c) (ii)	1	4.2, 14.3	H5, P4
13 (d) (i)	2	5.5	H2, H5, P4
13 (d) (ii)	3	5.4, 5.5	H2, H5, P4
14 (a)	3	10.2, 10.4, 12.4	Н5
14 (b) (i)	1	9.2	P4
14 (b) (ii)	2	1.4, 9.2	P4
14 (c)	3	11.4	Н8, Н9
14 (d) (i)	1	7.2	Н5
14 (d) (ii)	2	7.3	H5
14 (e)	3	10.2, 10.4	Н7
15 (a)	3	5.2, 13.2	P4, H5
15 (b) (i)	2	2.3	P4, H9
15 (b) (ii)	1	2.5	Н5, Н9
15 (b) (iii)	2	2.5	Н5, Н9
15 (b) (iv)	2	2.5	H2, H5, H9
15 (c) (i)	1	4.2, 6.1, 12.3	Р5, Н3, Н5
15 (c) (ii)	3	1.4, 10.1	H3, H5, H9
15 (c) (iii)	1	10.1	Н3
16 (a)	3	11.3, 13.2	Н5, Н8
16 (b) (i)	2	7.5	H2, H5, H9
16 (b) (ii)	3	7.5	Н5
16 (c) (i)	2	10.6	H4, H5, H9
16 (c) (ii)	2	10.6	H4, H5, H9
16 (c) (iii)	3	10.6	Н5