

2015 HSC Mathematics Extension 2 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	A
3	A
4	С
5	В
6	C
7	A
8	В
9	D
10	С

Section II

Question 11 (a)

Criteria	Marks
Provides correct solution	2
• Attempts to use conjugate of denominator, or equivalent merit	1

Sample answer:

$$\frac{4+3i}{2-i} = \frac{(4+3i)}{(2-i)} \times \frac{(2+i)}{(2+i)} = \frac{8+6i+4i-3}{4+1}$$
$$= \frac{5+10i}{5}$$
$$= 1+2i$$

Question 11 (b) (i)

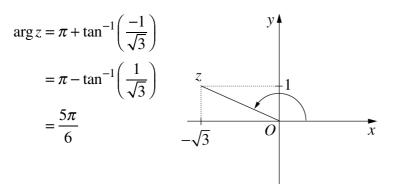
Criteria	Marks
Provides correct answer	1

$$|z| = \left| -\sqrt{3} + i \right|$$
$$= \sqrt{\left(-\sqrt{3}\right)^2 + 1}$$
$$= \sqrt{3 + 1}$$
$$= 2$$

Question 11 (b) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:



Question 11 (b) (iii)

Criteria	Marks
Provides correct answer	1

$$\arg\left(\frac{z}{w}\right) = \arg z - \arg w$$
$$= \frac{5\pi}{6} - \frac{\pi}{7}$$
$$= \frac{29\pi}{42}$$

Question 11 (c)

Criteria	Marks
Provides correct solution	2
• Finds <i>A</i> , or equivalent merit	1

Sample answer:

$$\frac{1}{x(x^2+2)} = \frac{A}{x} + \frac{Bx+C}{x^2+2}$$
$$1 = A(x^2+2) + (Bx+C)x$$
$$1 = Ax^2 + 2A + Bx^2 + Cx$$

Equating constant terms,

1 = 2A

$$A = \frac{1}{2}$$

Equating coefficients of x^2 ,

$$O = A + B$$
$$O = \frac{1}{2} + B$$
$$B = -\frac{1}{2}$$

Equating coefficients of x, C = 0

Question 11 (d)

Criteria	Marks
Provides correct sketch	2
Finds eccentricity, or equivalent merit	1

For an ellipse
$$b^2 = a^2(1-e^2)$$

 $\Rightarrow 16 = 25(1-e^2)$
 $\frac{16}{25} = 1-e^2$
 $e^2 = 1-\frac{16}{25}$
 $e = \frac{3}{5}$
 \therefore Foci $(\pm ae, 0) = (\pm 5 \times \frac{3}{5}, 0)$
 $= (\pm 3, 0)$
 y
 4
 4
 -5
 $S'(-3, 0)$
 0
 $S(3, 0)$
 5
 x
 -4

Question 11 (e)

Criteria	Marks
Provides correct solution	3
Correctly differentiates, or equivalent merit	2
Uses the chain rule, or equivalent merit	1

Sample answer:

Differentiating with respect to x

$$1 + 2xy^{3} + x^{2}3y^{2}\frac{dy}{dx} = 0$$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{-1 - 2xy^{3}}{x^{2}3y^{2}}$$

At (2, -1)

$$\frac{dy}{dx} = \frac{-1 - 2 \times 2 \times (-1)^{3}}{2^{2} \times 3 \times (-1)^{2}}$$

$$= \frac{1}{4}$$

Question 11 (f) (i)

Criteria	Marks
Provides correct solution	2
• Expresses $\cot\theta$ or $\csc\theta$ in terms of $\tan\frac{\theta}{2}$, or equivalent merit	1

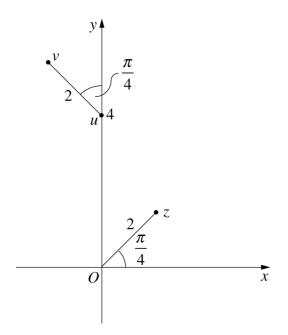
$$LHS = \cot\theta + \csc\theta \qquad \text{Let } t = \tan\frac{\theta}{2}$$
$$= \frac{1 - t^2}{2t} + \frac{1 + t^2}{2t}$$
$$= \frac{2}{2t}$$
$$= \frac{1}{t}$$
$$= \cot\left(\frac{\theta}{2}\right)$$
$$= RHS$$

Question 11 (f) (ii)

Criteria	Marks
Provides correct solution	1

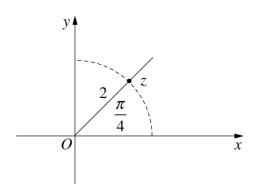
$$\int (\cot\theta + \csc\theta) d\theta$$
$$= \int \cot\frac{\theta}{2} d\theta$$
$$= \int \frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}} d\theta$$
$$= \frac{1}{\frac{1}{2}} \ln \left| \sin\frac{\theta}{2} \right| + c$$
$$= 2 \ln \left| \sin\frac{\theta}{2} \right| + c$$

Question 12 (a) (i), (ii), (iii)



Question 12 (a) (i)

Criteria	Marks
Provides correct solution	1



Question 12 (a) (ii)

Criteria	Marks
Provides correct solution	1

Sample answer:

$$\arg(z^{2}) = \frac{\pi}{2}$$

$$|z^{2}| = 4$$

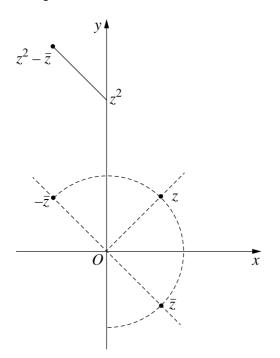
$$\operatorname{so} z^{2} = 4i$$

$$O$$

$$x$$

Question 12 (a) (iii)

Criteria	Marks
Provides correct solution	1



Question 12 (b) (i)

Criteria	Marks
Provides correct solution	3
• Finds <i>a</i> , or equivalent merit	2
• Recognises that the conjugates are also roots, or equivalent merit	1

Sample answer:

The roots are $a \pm ib$ and $a \pm 2ib$ \therefore The sum of the roots is (a+2ib)+(a-2ib)+(a+ib)+(a-ib)=4 $\Rightarrow 4a = 4$ a = 1

The product of the roots is (a+2ib)(a-2ib)(a+ib)(a-ib) = 10 $\Rightarrow (a^2+4b^2)(a^2+b^2) = 10$ But a = 1, $\therefore (1+4b^2)(1+b^2) = 10$ $4b^4+5b^2+1-10 = 0$ $4b^4+5b^2-9 = 0$ $(4b^2+9)(b^2-1) = 0$ $b^2 = 1$ $b = \pm 1$ ∴ Roots are $1\pm i$, $1\pm 2i$

Question 12 (b) (ii)

Criteria	Marks
Provides correct solution	1

Sample answer:

The roots are $x = 1 \pm i$ and $x = 1 \pm 2i$

Polynomials with real coefficients have roots that occur in complex conjugate pairs.

: Using the sum and product of the roots, the required quadratics are:

 $x^{2} - (1+i+1-i)x + (1+i)(1-i) \text{ and } x^{2} - (1+2i+1-2i)x + (1+2i)(1-zi)$ = $x^{2} - 2x + 2$ = $x^{2} - 2x + 5$

Question 12 (c) (i)

Criteria	Marks
Provides correct solution	2
• Attempts a division of polynomials, or equivalent merit	1

Sample answer:

$$\frac{(x-2)(x-5)}{(x-1)} = \frac{x^2 - 7x + 10}{x-1}$$

Using long division,

$$\frac{x-6}{x-1)x^2-7x+10}$$

$$\frac{x^2-x}{-6x+10}$$

$$\frac{-6x+6}{4}$$

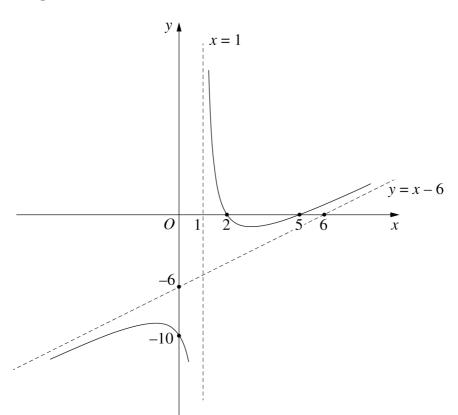
$$\therefore \frac{(x-2)(x-5)}{x-1} = x - 6 + \frac{4}{x-1}$$

where m = 1, b = -6, a = 4

 \therefore The oblique asymptote is y = x - 6

Question 12 (c) (ii)

Criteria	Marks
Provides correct sketch	2
• Identifies any TWO intercepts and the vertical asymptote, or equivalent merit	1



Question 12 (d)

Criteria	Marks
Provides correct solution	4
• Attempts to evaluate the correct integral using a suitable method, or equivalent merit	3
• Provides correct integral expression for the volume, or equivalent merit	2
• Recognises the radius is $3 - x$, or equivalent merit	1

Sample answer:

 $=\frac{188\pi}{15}$ units³

Radius of a typical shell is 3 - x $\therefore V = 2\pi \int_{0}^{3} (3 - x)\sqrt{x + 1} dx$ Let $u^{2} = x + 1$ $x = u^{2} - 1$ $\frac{dx}{du} = 2u$ $x = 0, \quad u = 1$ $x = 3 \quad u = 2$ $\therefore V = 2\pi \int_{1}^{2} (4 - u^{2})u.2u du$ $= 4\pi \int_{1}^{2} (4u^{2} - u^{4}) du$ $= 4\pi \left[\frac{4u^{3}}{3} - \frac{u^{5}}{5}\right]_{1}^{2}$ $= 4\pi \left(\frac{32}{3} - \frac{32}{5} - \left(\frac{4}{3} - \frac{1}{5}\right)\right)$

Question 13 (a) (i)

Criteria	Marks
Provides correct solution	1

Sample answer:

At Q, $x = a \tan \theta$, $y = b \sec \theta$, so substituting into H_2

$$LHS = \frac{(a \tan \theta)^2}{a^2} - \frac{(b \sec \theta)^2}{b^2}$$
$$= \frac{a^2 \tan^2 \theta}{a^2} - \frac{b^2 \sec^2 \theta}{b^2}$$
$$= \frac{a^2 b^2 (\tan^2 \theta - \sec^2 \theta)}{a^2 b^2}$$
$$= \frac{a^2 b^2 (-1)}{a^2 b^2} \quad (\text{since } \tan^2 \theta + 1 = \sec^2 \theta)$$
$$= -1$$
$$= RHS$$

Question 13 (a) (ii)

Criteria	Marks
Provides correct solution	2
• Finds the slope of PQ, or equivalent merit	1

Sample answer:

The gradient of PQ is
$$\frac{b \sec \theta - b \tan \theta}{a \tan \theta - a \sec \theta}$$
$$= \frac{-b(\tan \theta - \sec \theta)}{a(\tan \theta - \sec \theta)}$$
$$= \frac{-b}{a}$$

 \therefore equation of *PQ* is

$$y - b \tan \theta = \frac{-b}{a} (x - a \sec \theta)$$
$$\Rightarrow ay - ab \tan \theta = -bx + ab \sec \theta$$
$$\Rightarrow bx + ay = ab (\tan \theta + \sec \theta)$$

Question 13 (a) (iii)

Criteria	Marks
Provides correct proof	3
• Finds a correct expression for the area, or equivalent merit	2
• Finds a correct expression for one relevant distance, or equivalent merit	1

Sample answer:

$$PQ^{2} = a^{2} (\tan \theta - \sec \theta)^{2} + b^{2} (\sec \theta - \tan \theta)^{2}$$
$$= (a^{2} + b^{2})(\tan \theta - \sec \theta)^{2}$$
$$\therefore PQ = \sqrt{a^{2} + b^{2}} |\tan \theta - \sec \theta|$$
$$= \sqrt{a^{2} + b^{2}} (\sec \theta - \tan \theta)$$
Since for $0 \le \theta \le \frac{\pi}{2}$, $\sec \theta \ge \tan \theta$ line PQ : $bx + ay - ab(\tan \theta + \sec \theta) = 0$
Perpendicular distance from O to PQ is

$$= \frac{|b \times 0 + a \times O - ab(\tan\theta + \sec\theta)|}{\sqrt{a^2 + b^2}}$$
$$= \frac{ab(\tan\theta + \sec\theta)}{\sqrt{a^2 + b^2}}$$

Now, area of $\triangle OPQ$ is

$$\frac{1}{2} \times \sqrt{a^2 + b^2} (\sec \theta - \tan \theta) \times \frac{ab(\tan \theta + \sec \theta)}{\sqrt{a^2 + b^2}}$$
$$= \frac{ab}{2} (\sec^2 \theta - \tan^2 \theta)$$
$$= \frac{ab}{2} (1) \text{ which is independent of } \theta$$

Question 13 (b) (i)

Criteria	Marks
Provides correct solution	1

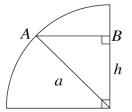
Sample answer:

The cylinder is bounded by a circle $x^2 + y^2 = a^2$

$$\therefore$$
 when $y = h$, $x = \sqrt{a^2 - h^2}$

Or

Using the right hand quarter cylinder



Using Pythagoras' Theorem, $AB = \sqrt{a^2 - h^2}$

Question 13 (b) (ii)

Criteria	Marks
Provides correct solution	2
• Finds correct integral expression for the volume, or equivalent merit	1

Sample answer:

Area of the slice $ABCD = a^2 - h^2$

Hence, the volume is given by

$$V = \int_0^a (a^2 - h^2) dh$$
$$= \left[a^2 h - \frac{h^3}{3} \right]_0^a$$
$$= \frac{2a^3}{3} \text{ units}^3$$

Question 13 (c) (i)

Criteria	Marks
Provides correct solution	2
• Correctly finds $\frac{dS}{dt}$ in terms of $\frac{dr}{dt}$, or equivalent merit	1

Sample answer:

$$S = 4\pi r^{2} \text{ and } \frac{dS}{dt} = \left(\frac{4\pi}{3}\right)^{\frac{1}{3}} \text{ and } \frac{dS}{dt} = \frac{dS}{dr} \cdot \frac{dr}{dt}$$
$$\therefore \frac{dS}{dt} = 8\pi r \frac{dr}{dt}$$
$$\text{so } \left(\frac{4\pi}{3}\right)^{\frac{1}{3}} = 8\pi r \frac{dr}{dt}$$
$$\text{giving } \frac{dr}{dt} = \frac{1}{8\pi r} \left(\frac{4\pi}{3}\right)^{\frac{1}{3}}$$

Question 13 (c) (ii)

Criteria	Marks
Provides correct solution	2
• Correctly finds $\frac{dV}{dt}$ in terms of $\frac{dr}{dt}$, or equivalent merit	1

$$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$$

$$\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$$

$$= 4\pi r^2 \cdot \frac{1}{8\pi r} \left(\frac{4\pi}{3}\right)^{\frac{1}{3}} \text{ by (i)}$$

$$= \frac{1}{2} r \left(\frac{4\pi}{3}\right)^{\frac{1}{3}}$$

$$= \frac{1}{2} \left(r^3 \cdot \frac{4\pi}{3}\right)^{\frac{1}{3}}$$

$$\frac{dV}{dt} = \frac{1}{2} V^{\frac{1}{3}}$$

Question 13 (c) (iii)

Criteria	Marks
Provides correct solution	2
• Finds correct primitive for <i>t</i> in terms of <i>V</i> , or equivalent merit	1

Sample answer:

As

$$\frac{dV}{dt} = \frac{1}{2}V^{\frac{1}{3}}$$
$$\left(\frac{dV}{dt} = \frac{1}{2}\int dt$$

so $\int \frac{dV}{V^{\frac{1}{3}}} = \frac{1}{2} \int dt$ $\int_{8\,000}^{64\,000} V^{-\frac{1}{3}} dV = \frac{1}{2} \int_{0}^{t} dt$

$$\therefore \quad \frac{1}{2}t = \left[\frac{3}{2} \cdot V^{\frac{2}{3}}\right]_{8\ 000}^{64\ 000}$$

 $t = 3(40^2 - 20^2)$

 \therefore time = 3 600 seconds

$$(=1 \text{ hour})$$

Question 14 (a) (i)

Criteria	Marks
Provides correct solution	2
• Attempts to differentiate and obtains an expression involving $\cos^2 \theta$, or equivalent merit	1

$$y = \sin^{n-1}\theta\cos\theta$$

$$y' = u'v + v'u$$
Let $u = \sin^{n-1}\theta$

$$v = \cos\theta$$

$$u' = (n-1)\sin^{n-2}\theta\cos\theta$$

$$v' = -\sin\theta$$

$$= (n-1)\sin^{n-2}\theta(1-\sin^2\theta) - \sin^n\theta$$
$$= (n-1)\sin^{n-2}\theta - (n-1)\sin^n\theta - \sin^n\theta$$
$$= (n-1)\sin^{n-2}\theta - (n-1)\sin^n\theta$$

Question 14 (a) (ii)

Criteria	Marks
Provides correct solution	2
• Attempts to evaluate the integral of the expression from part (i), or equivalent merit	1

$$y' = \frac{dy}{d\theta} = (n-1)\sin^{n-2}\theta - n\sin^n\theta$$
$$\int_0^{\frac{\pi}{2}} dy = \int_0^{\frac{\pi}{2}} (n-1)\sin^{n-2}\theta - n\sin^n\theta d\theta$$
$$\begin{bmatrix} y \end{bmatrix}_0^{\frac{\pi}{2}} = (n-1)\int_0^{\frac{\pi}{2}}\sin^{n-2}\theta d\theta - n\int_0^{\frac{\pi}{2}}\sin^n\theta d\theta$$
$$\begin{bmatrix} \sin^{n-1}\theta\cos\theta \end{bmatrix}_0^{\frac{\pi}{2}} = (n-1)\int_0^{\frac{\pi}{2}}\sin^{n-2}\theta d\theta - n\int_0^{\frac{\pi}{2}}\sin^n\theta d\theta$$
$$0 = (n-1)\int_0^{\frac{\pi}{2}}\sin^{n-2}\theta d\theta - n\int_0^{\frac{\pi}{2}}\sin^n\theta d\theta$$
$$n\int_0^{\frac{\pi}{2}}\sin^n\theta d\theta = (n-1)\int_0^{\frac{\pi}{2}}\sin^{n-2}\theta d\theta$$
$$\int_0^{\frac{\pi}{2}}\sin^n\theta d\theta = \left(\frac{n-1}{n}\right)\int_0^{\frac{\pi}{2}}\sin^{n-2}\theta d\theta$$

Question 14 (a) (iii)

Criteria	Marks
Provides correct solution	1

Sample answer:

$$\int_{0}^{\frac{\pi}{2}} \sin^{4}\theta \, d\theta = \frac{4-1}{4} \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \, d\theta$$
$$= \frac{3}{4} \left[\left(\frac{2-1}{2} \right) \int_{0}^{\frac{\pi}{2}} d\theta \right]$$
$$= \frac{3}{4} \times \frac{1}{2} \left[\theta \right]_{0}^{\frac{\pi}{2}}$$
$$= \frac{3}{8} \left(\frac{\pi}{2} - 0 \right)$$
$$= \frac{3\pi}{16}$$

Question 14 (b) (i)

Criteria	Marks
Provides correct solution	1

$$\alpha + \beta + \gamma = -\frac{b}{a} = 0$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a} = -p$$

$$(\alpha + \beta + \gamma)^{2} = 0$$

ie $\alpha^{2} + \beta^{2} + \gamma^{2} + 2(\alpha\beta + \alpha\gamma + \beta\gamma) = 0$

$$16 - 2p = 0$$

 $\therefore p = 8$

Question 14 (b) (ii)

Criteria	Marks
Provides correct solution	2
• Obtains a correct equation involving q and at least one of α^3 , β^3 , γ^3 , or equivalent merit	1

Sample answer:

 α is a root so

$$\alpha^{3} = p\alpha - q \qquad (1)$$

similarly $\beta^{3} = p\beta - q \qquad (2)$
 $\gamma^{3} = p\gamma - q \qquad (3)$
adding (1) + (2) + (3)
 $\alpha^{3} + \beta^{3} + \gamma^{3} = p(\alpha + \beta + \gamma) - 3q$
 $-9 = p \times 0 - 3q$
 $\therefore q = 3$

Question 14 (b) (iii)

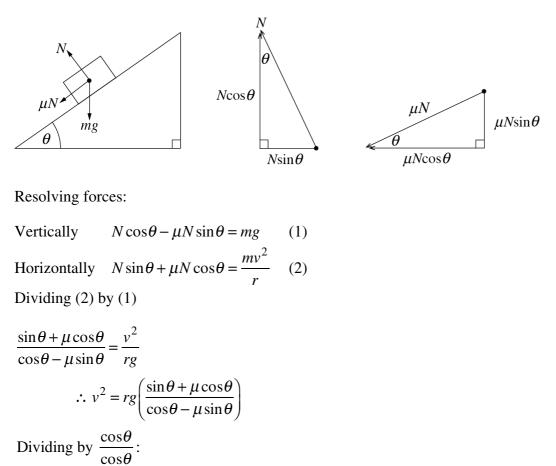
Criteria	Marks
Provides correct solution	2
• Obtains an equation involving $\alpha^4 + \beta^4 + \gamma^4$, or equivalent merit	1

Since	$\alpha^3 = p\alpha - q$
SO	$\alpha^4 = p\alpha^2 - q\alpha$
similarly	$\beta^4 = p\beta^2 - q\beta$
	$\gamma^4 = p\gamma^2 - q\gamma$
adding $\alpha^4 + \beta^4$ -	$+\gamma^{4} = p(\alpha^{2} + \beta^{2} + \gamma^{2}) - q(\alpha + \beta + \gamma)$
	$=8 \times 16 - q \times 0$
	=128

Question 14 (c) (i)

Criteria	Marks
Provides correct solution	3
Provides correct resolution of forces, or equivalent merit	2
Resolves forces in vertical direction, or equivalent merit	1

Sample answer:



 $v^2 = rg\left(\frac{\tan\theta + \mu}{1 - \mu\tan\theta}\right)$

Question 14 (c) (ii)

Criteria	Marks
Provides correct solution	2
• Obtains correct expression for $\tan \theta$ in terms of μ , or equivalent merit	1

Sample answer:

Since v = V

$$V^2 = rg$$
 and $V^2 = rg\left(\frac{\tan\theta + \mu}{1 - \mu\tan\theta}\right)$
so $\frac{\tan\theta + \mu}{1 - \mu\tan\theta} = 1$

hence

$$\tan \theta + \mu = 1 - \mu \tan \theta$$
$$\mu + \mu \tan \theta = 1 - \tan \theta$$
so
$$\mu = \frac{1 - \tan \theta}{1 + \tan \theta}$$

since
$$0 < \theta < \frac{\pi}{2}$$
, $\tan \theta > 0$
so $1 - \tan \theta < 1$ and $1 + \tan \theta > 1$
 $\therefore \mu < 1$

Question 15 (a) (i)

Criteria	Marks
Provides correct solution	2
• Obtains $\ddot{x} = -kv^2$, or equivalent merit	1

Sample answer:

$$0 \qquad \longleftarrow -kv^{2}$$

$$\ddot{x} = -kv^{2}$$

$$\frac{dv}{dt} = -kv^{2}$$

$$kdt = -\frac{dv}{v^{2}}$$

$$\Rightarrow kt = -\int \frac{dv}{v^{2}}$$

$$kt = \frac{1}{v} + C$$

Now t = 0, $v = u \Longrightarrow C = -\frac{1}{u}$

$$\therefore \quad \frac{1}{v} = kt + \frac{1}{u}$$

Question 15 (a) (ii)

Criteria	Marks
Provides correct solution	3
• Correctly integrates to find <i>t</i> , or equivalent merit	2
• Obtains $\ddot{x} = -g - kw^2$, or equivalent merit	1

Sample answer:

$$\int_{-g} \int_{-g} \int_{-kw^{2}} \frac{1}{-g} dw^{2}$$

$$\ddot{x} = -g - kw^{2}$$

$$\therefore \frac{dw}{dt} = -(g + kw^{2})$$

$$\frac{dt}{dw} = -\frac{1}{g + kw^{2}}$$

$$t = -\int \frac{1}{g + kw^{2}} dw$$

$$= -\frac{1}{k} \int \frac{1}{\frac{g}{k} + w^{2}} dw$$

$$= -\frac{1}{k} \left[\sqrt{\frac{k}{g}} \tan^{-1} \left(w \sqrt{\frac{k}{g}} \right) \right] + C$$

$$\therefore t = -\frac{1}{\sqrt{gk}} \tan^{-1} \left(w \sqrt{\frac{k}{g}} \right) + C$$

Now t = 0, w = u, so

$$C = \frac{1}{\sqrt{gk}} \tan^{-1} \left(u \sqrt{\frac{k}{g}} \right)$$

$$\therefore t = \frac{1}{\sqrt{gk}} \left(\tan^{-1} \left(u \sqrt{\frac{k}{g}} \right) - \tan^{-1} \left(w \sqrt{\frac{k}{g}} \right) \right)$$

Question 15 (a) (iii)

Criteria	Marks
Provides correct solution	1

Sample answer:

The second particle is at rest when w = 0

$$\therefore t = \frac{1}{\sqrt{gk}} \tan^{-1} \left(u \sqrt{\frac{k}{g}} \right)$$

At this time the velocity of the first particle is

$$\frac{1}{V} = \frac{1}{u} + k \left(\frac{1}{\sqrt{gk}} \tan^{-1} \left(u \sqrt{\frac{k}{g}} \right) \right) \text{ from (i)}$$
$$\therefore \frac{1}{V} = \frac{1}{u} + \sqrt{\frac{k}{g}} \tan^{-1} \left(u \sqrt{\frac{k}{g}} \right)$$

Question 15 (a) (iv)

Criteria	Marks
Provides correct solution	1

From (iii),
$$\frac{1}{V} = \frac{1}{u} + \sqrt{\frac{k}{g}} \tan^{-1} \left(u \sqrt{\frac{k}{g}} \right)$$

for u range, $\frac{1}{u} \approx 0$, $\tan^{-1} \left(u \sqrt{\frac{k}{g}} \right) \approx \frac{\pi}{2}$
 $\therefore \frac{1}{V} \approx \sqrt{\frac{k}{g}} \cdot \frac{\pi}{2} \Rightarrow V \approx \frac{2}{\pi} \sqrt{\frac{g}{k}}$

Question 15 (b) (i)

Criteria	Marks
Provides correct solution	2
Obtains one of the required inequalities	1

Sample answer:

Since for $x \ge 0$

$$1 - x^{2} \le 1 \qquad \text{ie } (1 - x)(1 + x) \le 1$$

since $(1 + x) > 0$ we have $1 - x \le \frac{1}{1 + x}$
and since $x \ge 0$ then $1 + x \ge 1$

and since $x \ge 0$ then $1 + x \ge 1$

$$\therefore \frac{1}{1+x} \le 1$$
$$\therefore 1-x \le \frac{1}{1+x} \le 1$$

Question 15 (b) (ii)

Criteria	Marks
Provides correct solution	2
• Integrates the inequalities from part (i), or equivalent merit	1

Sample answer:

Since
$$\int_{a}^{b} \frac{1}{1+x} dx = \left[\ln(1+x)\right]_{a}^{b}$$

= $\ln(1+b) - \ln(1+a)$
We want $\ln\left(1+\frac{1}{n}\right)$ so let $a = 0$ and $b = \frac{1}{n}$
 $\therefore \int_{0}^{\frac{1}{n}} 1-x \, dx \le \int_{0}^{\frac{1}{n}} \frac{1}{1+x} \, dx \le \int_{0}^{\frac{1}{n}} 1 \, dx$
 $\therefore \left[x - \frac{x^{2}}{2}\right]_{0}^{\frac{1}{n}} \le \left[\ln(1+x)\right]_{0}^{\frac{1}{n}} \le \left[x\right]_{0}^{\frac{1}{n}}$
 $\therefore \frac{1}{n} - \frac{1}{2n^{2}} \le \ln\left(1+\frac{1}{n}\right) \le \frac{1}{n}$

multiplying through by *n*:

$$1 - \frac{1}{2n} \le n \ln\left(1 + \frac{1}{n}\right) \le 1$$

Question 15 (b) (iii)

Criteria	Marks
Provides correct explanation	1

Sample answer:

From (ii),
$$1 - \frac{1}{2n} \le n \ln\left(1 + \frac{1}{n}\right) \le 1$$
$$\Rightarrow \qquad 1 - \frac{1}{2n} \le \ln\left(1 + \frac{1}{n}\right)^n \le 1$$
$$\lim_{n \to \infty} \left(1 - \frac{1}{2n}\right) \le \lim_{n \to \infty} \ln\left(1 + \frac{1}{n}\right)^n \le \lim_{n \to \infty} 1$$
ie
$$1 \le \lim_{n \to \infty} \ln\left(1 + \frac{1}{n}\right)^n \le 1$$
$$\Rightarrow \qquad \lim_{n \to \infty} \ln\left(1 + \frac{1}{n}\right)^n = 1$$

$$\Rightarrow \quad \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Question 15 (c) (i)

Criteria	Marks
Provides correct proof	1

Sample answer:

Replacing x with x^2 , y with y^2 in the given inequality we have

$$\sqrt{x^2 y^2} \le \frac{x^2 + y^2}{2}$$

ie $xy \le \frac{x^2 + y^2}{2}$
so $\sqrt{xy} \le \sqrt{\frac{x^2 + y^2}{2}}$, since $x, y > 0$

Question 15 (c) (ii)

Criteria	Marks
Provides correct proof	2
• Uses (i) to obtain a valid expression in a^2 , b^2 , c^2 and d^2 , or equivalent merit	1

Sample answer:

$$\sqrt{(ab)(cd)} = \sqrt{ab}\sqrt{cd}$$

$$\leq \sqrt{\frac{a^2 + b^2}{2}}\sqrt{\frac{c^2 + d^2}{2}} \quad \text{by (i)}$$

$$\leq \sqrt{\left(\frac{a^2 + b^2}{2}\right)\left(\frac{c^2 + d^2}{2}\right)}$$

$$\leq \frac{1}{2}\left(\frac{a^2 + b^2 + c^2 + d^2}{2}\right) \quad \text{by given inequality}$$

$$= \frac{a^2 + b^2 + c^2 + d^2}{4}$$

Taking positive square roots,

$$\sqrt[4]{(abcd)} \le \sqrt{\frac{a^2 + b^2 + c^2 + d^2}{4}}$$

Question 16 (a) (i)

Criteria	Marks
Provides correct solution	2
• Shows total number of arrangements is $\binom{15}{5}$, or equivalent merit	1

Sample answer:

There are $\binom{15}{5}$ ways to place 5 black counters in the grid.

There are three choices to place a black counter in each column, so there are 3^5 ways to place the black counters with one in each column.

$$\therefore \text{Probability} = \frac{3^5}{\binom{15}{5}} = \frac{81}{1001}$$

Question 16 (a) (ii)

Criteria	Marks
Provides correct solution	2
• Shows total number of arrangements is $\binom{nq}{q}$, or equivalent merit	1

Sample answer:

There are *nq* places and we choose *q* places for black counters, giving $\binom{nq}{q}$ arrangements.

There are n places for each black counter in each of q columns.

So there are n^q arrangements with one black counter in each column.

$$P_n = \frac{n^q}{\binom{nq}{q}}$$

Question 16 (a) (iii)

Criteria	Marks
Provides correct solution	2
• Obtains an expression for P_n with q terms in denominator, or equivalent merit	1

Sample answer:

$$\begin{split} P_n &= \frac{n^q}{\binom{nq}{q}} \\ &= \frac{n^q}{nq(nq-1)\dots(nq-q+1)/q!} \\ &= \frac{q!n^q}{nq(nq-1)\dots(nq-q+1)} \\ &= \frac{q!}{q\left(q-\frac{1}{n}\right)\left(q-\frac{2}{n}\right)\dots\left(q-\frac{q}{n}+\frac{1}{n}\right)} \end{split}$$

As $n \to \infty$,

$$P_n \rightarrow \frac{q!}{q^q}$$

Question 16 (b) (i)

Criteria	Marks
Provides correct solution	2
Applies De Moivre's theorem, or equivalent merit	1

Sample answer:

By De Moivre's theorem

 $(\cos\alpha + i\sin\alpha)^{2n} = \cos(2n\alpha) + i\sin(2n\alpha)$

By the bionomial theorem,

$$(\cos\alpha + i\sin\alpha)^{2n} = \cos^{2n}\alpha + \binom{2n}{1}\cos^{2n-1}\alpha \cdot i\sin\alpha + \binom{2n}{2}\cos^{2n-2}\alpha(i\sin\alpha)^2 + \dots + \binom{2n}{2n-2}\cos^2\alpha(i\sin\alpha)^{2n-2} + \binom{2n}{2n-1}\cos\alpha(i\sin\alpha)^{2n-1} + \binom{2n}{2n}(i\sin\alpha)^{2n}$$

Equating real parts,

$$\cos(2n\alpha) = \cos^{2n}\alpha - \binom{2n}{2}\cos^{2n-2}\alpha\sin^2\alpha + \dots + \binom{2n}{2n-2}\cos^2\alpha\sin^{2n-2}\alpha(-1)^{n-1} + (-1)^n\sin^{2n}\alpha$$

Question 16 (b) (ii)

Criteria	Marks
Provides correct solution	2
• Explains the connection between $T_{2n}(x)$ and $\cos(2n\alpha)$, or equivalent merit	1

Sample answer:

$$T_{2n}(x) = \cos(2n\cos^{-1}x)$$

put $\alpha = \cos^{-1}x$, so $x = \cos\alpha$ in (i)
noting that $\sin^{2k}\alpha = (\sin^2\alpha)^k$
 $= (1 - \cos^2\alpha)^k$

Then

$$T_{2n}(x) = x^{2n} - {\binom{2n}{2}} x^{2n-2} (1-x^2) + \dots + (-1)^n (1-x^2)^n$$

Question 16 (b) (iii)

Criteria	Marks
Provides correct solution	3
• Shows that the roots of $T_{2n}(x)$ are $\cos\left(\frac{\pi}{4n}\right)$, $\cos\left(\frac{3\pi}{4n}\right)$,, $\cos\left(\frac{(4n-1)\pi}{4n}\right)$, or equivalent merit	2
• Obtains (or verifies) that $\cos\left(\frac{(2k-1)\pi}{4n}\right)$ are all roots of $T_{2n}(x)$, or equivalent merit	1

Sample answer:

$$0 = T_{2n}(x) = \cos(2n\cos^{-1}x)$$

This occurs when $2n\cos^{-1}x = \frac{(2k-1)\pi}{2}$
ie $\cos^{-1}x = \frac{(2k-1)\pi}{4n}$
 $x = \cos\left(\frac{(2k-1)\pi}{4n}\right)$

Consider the 2n solutions with k = 1, 2, ..., 2n ie

$$\cos\left(\frac{\pi}{4n}\right), \ \cos\left(\frac{3\pi}{4n}\right), \ \dots, \ \cos\left(\frac{(4n-1)\pi}{4n}\right)$$

As the angles are in the range 0 to π and are distinct these solutions are distinct. (Given that $\cos x$ is decreasing for $0 \le x \le \pi$.)

We have 2n distinct solutions of a polynomial of degree 2n, and so these are all the roots.

As we have a polynomial of even degree, the product of the roots is the constant term divided by the leading term. We may find the constant term by setting x = 0, obtaining $(-1)^n$.

The coefficients of x^{2n} are

1,
$$\binom{2n}{2}$$
, $\binom{2n}{4}$, ..., 1

The leading term is the sum of these and hence

$$\cos\left(\frac{\pi}{4n}\right)\cos\left(\frac{3\pi}{4n}\right)\cos\left(\frac{(4n-1)\pi}{4n}\right) = \frac{(-1)^n}{1+\binom{2n}{2}+\binom{2n}{4}+\ldots+1}$$

In fact the denominator on the right may be simplified

$$\cos\left(\frac{\pi}{4n}\right)\cos\left(\frac{3\pi}{4n}\right)\cos\left(\frac{(4n-1)\pi}{4n}\right) = \frac{(-1)^n}{2^{2n-1}}$$

Question 16 (b) (iv)

Criteria	Marks
Provides correct proof	2
• Evaluates $T_{2n}\left(\frac{1}{\sqrt{2}}\right)$, or equivalent merit	1

Put
$$x = \frac{1}{\sqrt{2}}$$
 then $1 - x^2 = \frac{1}{2}$
 $T_{2n}\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{2^n} - \binom{2n}{2} \cdot \frac{1}{2^n} + \binom{2n}{4} \cdot \frac{1}{2^n} + \dots + (-1)^n \binom{2n}{2n} \cdot \frac{1}{2^n}$
 $= \cos\left(2n\cos^{-1}\frac{1}{\sqrt{2}}\right) = \cos\left(\frac{n\pi}{2}\right)$
 $\therefore 1 - \binom{2n}{2} + \binom{2n}{4} - \binom{2n}{6} + \dots + (-1)^n \binom{2n}{2n} = 2^n \cos\left(\frac{n\pi}{2}\right)$

2015 HSC Mathematics Extension 2 Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	3.2	E3
2	1	2.1	E3
3	1	1.4	E6
4	1	7.2	E4
5	1	2.4	E3
6	1	4.1	E8
7	1	8	HE3, E9
8	1	1.7	E6
9	1	2.2	E3
10	1	8	E2

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	2	2.1	E3
11 (b) (i)	1	2.2	E3
11 (b) (ii)	1	2.2	E3
11 (b) (iii)	1	2.2	E3
11 (c)	2	7.6	E4
11 (d)	2	3.1	E3
11 (e)	3	1.8	E6
11 (f) (i)	2	4.1	PE6, E2
11 (f) (ii)	1	4.1	E8
12 (a) (i)	1	2.2	E3
12 (a) (ii)	1	2.2	E3
12 (a) (iii)	1	2.3	E3
12 (b) (i)	3	7.4, 7.5	E3, E4
12 (b) (ii)	1	7.4, 7.5	E3, E4
12 (c) (i)	2	1.8	E6
12 (c) (ii)	2	1.8	E6
12 (d)	4	5.1	E7
13 (a) (i)	1	3.2	E3
13 (a) (ii)	2	3.2	E3
13 (a) (iii)	3	3.2	E3
13 (b) (i)	1	8	E2

Question	Marks	Content	Syllabus outcomes
13 (b) (ii)	2	5.1	E7
13 (c) (i)	2	14.1E, 8	HE3, E8
13 (c) (ii)	2	14.1E, 8	HE3, E8
13 (c) (iii)	2	14.1E, 8, 4.1	HE3, E8
14 (a) (i)	2	4.1	E8
14 (a) (ii)	2	4.1	E8
14 (a) (iii)	1	4.1	E8
14 (b) (i)	1	7.5	E4
14 (b) (ii)	2	7.5	E4
14 (b) (iii)	2	7.5	E4
14 (c) (i)	3	6.3.4	E5
14 (c) (ii)	2	6.3.4	E5
15 (a) (i)	2	6.2.1	E5
15 (a) (ii)	3	6.2.2	E5
15 (a) (iii)	1	6.2.1, 6.2.2	E5
15 (a) (iv)	1	6.2.1	E5
15 (b) (i)	2	8, 3, 1.4E	E2, HE7
15 (b) (ii)	2	8, 1.4E, 12.5	PE3, HE7, E2
15 (b) (iii)	1	8, 1.4E	PE3, E2
15 (c) (i)	1	8.3	E2
15 (c) (ii)	2	8.3	E2
16 (a) (i)	2	8	E2
16 (a) (ii)	2	8	E2
16 (a) (iii)	2	8	E2
16 (b) (i)	2	2.4	E3
16 (b) (ii)	2	8	E4
16 (b) (iii)	3	7.5	E4
16 (b) (iv)	2	7.5	E9