
     

 

 
 

  

  
  
  
  
  
  
  
  
  
  

2015 HSC Mathematics Extension  2  
Marking Guidelines  

Section I  

Multiple-choice Answer Key 

Question Answer 

1 D 
2 A 
3 A 
4 C 
5 B 
6 C 
7 A 
8 B 
9 D 
10 C 
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BOSTES 2015 HSC Mathematics Extension 2 Marking Guidelines 

Section II  

Question 11 (a) 

Criteria Marks 

• Provides correct solution 2 
• Attempts to use conjugate of denominator, or equivalent merit 1 

Sample answer: 

4 + 3i (4 + 3i) (2 + i) 8 + 6i + 4i − 3 = × = 
2 − i (2 − i) (2 + i) 4 +1
 

5 +10i
 = 
5 

= 1+ 2i 

Question 11 (b) (i) 

Criteria Marks 

• Provides correct answer 1 

Sample answer:  

z = − 3 + i 

 2 
= (− 3) +1  

= 3 +1 

= 2
 

– 2 – 
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Question 11 (b) (ii)  

 Criteria  Marks 

 •  Provides correct answer  1 

Sample answer:  

⎛ −1 ⎞arg z = π + tan−1 
⎜ ⎟⎝ 3 ⎠

−1 ⎛ 1 ⎞= π − tan ⎜ ⎟  ⎝ 3 ⎠
5π = 
6 

 

Question 11 (b) (iii)  

 Criteria  Marks 

 •  Provides correct answer  1 

Sample answer:  

⎛ z ⎞ arg = arg z − arg w⎝ w ⎠
5π π = −  
6 7 

29π = 
42 

 

– 3 – 
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Question 11 (c)  

 Criteria  Marks 

 •  Provides correct solution  2 
 •   Finds A, or equivalent merit  1 

Sample answer:  

1 A Bx + C+) = 
x (x2 + 2 x x2 + 2 

1 = A x2 + 2) + Bx + C) x( ( 

1 = Ax2 + 2A + Bx2 + Cx 

Equating constant terms, 

1 = 2A 

1
A = 

2 

Equating coefficients of x2, 

O = A + B 

1
O = + B 

2
 
1


B = − 
2 

Equating coefficients of x, 

C = 0 

– 4 – 
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Question 11 (d)  

 Criteria  Marks 

 •  Provides correct sketch  2 
 •   Finds eccentricity, or equivalent merit  1 

Sample answer: 

2For an ellipse b2 = a2 (1− e ) 
2(⇒ 16 = 25 1− e ) 

16 2= 1− e
25 

162e = 1− 
25 

3 
e = 

5 

⎛ 3 ⎞∴Foci (± ae, 0 ) = ±5 × , 0 ⎝ ⎠5 

= (±3,  0 ) 

– 5 – 
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Question 11 (e)  

 Criteria  Marks 

 •  Provides correct solution  3 
 •   Correctly differentiates, or equivalent merit  2 
 •   Uses the chain rule, or equivalent merit  1 

Sample answer: 

Differentiating with respect to x 

2 dy
1+ 2xy3 + x23y = 0 

dx 

dy −1− 2xy3 
⇒ 

dx 
= 

x23y2 

At (2, −1) 
dy −1− 2 × 2 × −( 1)3 

= 
dx 22 × 3 × −( 1)2 

1 = 
4 

Question 11 (f) (i)  

 Criteria  Marks 

 •  Provides correct solution  2 

 •   Expresses cotθ  or cosecθ in terms of tan 
θ 
2 

  , or equivalent merit  1 

Sample answer:  

LHS = cotθ + cosecθ 

1− t2 1+ t2 
= + 

2t 2t 
2 = 
2t 
1 = 
t 

⎛ θ ⎞ = cot ⎝ 2 ⎠ 
= RHS 

 

θ 
Let  t = tan 

2 

– 6 – 
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Question 11 (f) (ii) 

Criteria Marks 

• Provides correct solution 1 

Sample answer: 

⌠ 
⎮ (cotθ + cosecθ )dθ 
⌡

⌠ θ = cot dθ⎮ 2⌡


θ
⌠ 
⎮ 

cos 
2= dθ⎮ θ⎮ sin⌡ 2
 

1
 θ = ln sin + c1 2
 
2
 

θ = 2ln sin + c 
2 

– 7 – 
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Question 12 (a) (i), (ii), (iii) 

Question 12 (a) (i) 

Criteria Marks 

• Provides correct solution 1 

Sample answer: 

– 8 – 
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Question 12 (a) (ii) 

Criteria Marks 

• Provides correct solution 1 

Sample answer: 

π
arg (z2 )  = 

2 

z2 = 4  

so z2 = 4i 

Question 12 (a) (iii)  

Criteria Marks 

• Provides correct solution 1 

Sample answer: 

– 9 – 
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Question 12 (b)  (i)  

 Criteria  Marks 

 •  Provides correct solution  3 
 •  Finds a, or equivalent merit  2 
 •   Recognises that the conjugates are also roots, or equivalent merit  1 

Sample answer: 

The roots are a ± ib and a ± 2ib 

∴ The sum of the roots is 

(a + 2ib ) + (a − 2ib ) + (a + ib ) + (a − ib ) = 4 

⇒ 4a = 4 

a = 1 

The product of the roots is 

(a + 2ib )(a − 2ib )(a + ib )(a − ib ) = 10 

⇒ (a2 + 4b2 )(a2 + b2 ) = 10 

But a = 1, 

∴(1+ 4b2 )(1+ b2 ) = 10 

4b4 + 5b2 +1−10 = 0 

4b4 + 5b2 − 9 = 0 

(4b2 + 9)(b2 –1) = 0 

b2 = 1 

b = ±1 

∴Roots are 1± i, 1± 2i 

Question 12 (b) (ii) 

Criteria Marks 

• Provides correct solution 1 

Sample answer: 

The roots are x = 1 ± i and x = 1 ± 2i
 

Polynomials with real coefficients have roots that occur in complex conjugate pairs.
 

∴ Using the sum and product of the roots, the required quadratics are:
 

x2 − (1+ i +1− i) x + (1+ i)(1− i) and x2 − (1+ 2i +1− 2i) x + (1+ 2i)(1− zi ) 

= x2 − 2x + 2 = x2 − 2x + 5 

– 10 – 
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Question 12 (c) (i)  

  

   
     

Criteria Marks 

• Provides correct solution 2 
• Attempts a division of polynomials, or equivalent merit 1 

Sample answer:  

(x − 2)(x − 5) x2 − 7x +10 = 
(x −1) x −1 

Using long division, 

x − 6 
x −1 x2 − 7x +10 

x2 − x
 

−6x +10
 

−6x + 6
 
4
 

(x − 2)(x − 5) 4∴ = x − 6 + 
x −1 x −1 

where m = 1, b = −6, a = 4 

∴ The oblique asymptote is y = x − 6 

– 11 – 
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Question 12 (c) (ii)  

 Criteria  Marks 

 •  Provides correct sketch  2 
 •  Identifies any TWO intercepts and the vertical asymptote, or equivalent 

 merit  1 

Sample answer:  

– 12 – 
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Question 12 (d)  

 Criteria  Marks 

 •  Provides correct solution  4 
 •    Attempts to evaluate the correct integral using a suitable method, 

  or equivalent merit  3 

 •   Provides correct integral expression for the volume, or equivalent merit  2 
 •    Recognises the radius is 3 – x, or equivalent merit  1 

Sample answer:  

Radius of a typical shell is 3 –  x  

⌠3

∴V = 2π 
 (⎮ 3 − x) x +1dx
⌡0
 

Let   u2
= x +1   

x = u2 −1  

dx = 2u 
du 

x = 0, u = 1 

x = 3 u = 2 
 

2
 
2
∴V = 2π⎮

⌠ (4 − u )u.2udu 
⌡1 

2
 
4
= 4π⎮

⌠ (4u2 − u )du 
⌡1 

⎡ 4u3 5 ⎤2 

− 
u= 4π

⎣⎢ 3 5 ⎦⎥ 1 

⎛ 32 32 ⎛ 4 1⎞ ⎞ = 4π − − −⎝⎜ 3 5 ⎝ 3 5⎠ ⎠⎟
 

188π
 = units3 

15 

– 13 – 

area of a typical shell = 2πrh 
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Question 13 (a) (i) 

Criteria Marks 

• Provides correct solution 1 

Sample answer: 

At Q, x = a tanθ , y = bsecθ , so substituting into H2 

(a tanθ )2 (bsecθ )2 
LHS = −2 b2a


a2 tan2θ b2 sec2θ
 = −2 b2a


a2b2 (tan2θ − sec2θ )
= 2b2a


a2b2 (−1)
= (since tan2θ +1 = sec2θ)2b2a
= −1
 

= RHS
 

Question 13 (a) (ii)  

 Criteria  Marks 

 •  Provides correct solution  2 
 •   Finds the slope of PQ, or equivalent merit  1 

Sample answer:  

bsecθ − b tanθ
The  gradient  of  PQ  is  

a tanθ − asecθ 

−b(tanθ − secθ )=  
a(tanθ − secθ )
 

−b
 = 
a 

 
∴  equation of  PQ  is 

−b 
y − b tanθ = (x − asecθ ) 

a  
⇒ ay − ab tanθ = −bx + absecθ 

⇒ bx + ay = ab(tanθ + secθ ) 

– 14 – 
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Question 13 (a) (iii)  

 Criteria  Marks 

 •  Provides correct proof  3 
 •    Finds a correct expression for the area, or equivalent merit  2 
 •   Finds a correct expression for one relevant distance, or equivalent merit  1 

Sample answer:  

PQ2 = a2 (tanθ − secθ )2 + b2 (secθ − tanθ )2

= (a2 + b2 )(tanθ − secθ )2 

∴ PQ = a2 + b2 tanθ − secθ  

= a2 + b2 (secθ − tanθ )
 
π


Since  for  0 ≤θ ≤ ,   secθ ≥ tanθ 
2 

line  PQ :  bx + ay − ab(tanθ + secθ ) = 0 

Perpendicular  distance  from  O  to PQ  is 

b × 0 + a × O − ab(tanθ + secθ )
= 

a2 + b2

ab(tanθ + secθ )= 
a2 + b2

Now, area  of  !OPQ  is  

1 )
× a2 ab(tanθ + secθ+ b2 (secθ − tanθ ) × 

2 a2 + b2

ab = (sec2θ − tan2θ )
2 

ab =  (1)  which is i ndependent  of  θ 
 2
 

– 15 – 
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Question 13 (b) (i) 

Criteria Marks 

• Provides correct solution 1 

Sample answer:  

The cylinder is bounded by a circle x2 + y2 = a2  

∴when  y = h,  x = a2 − h2  

Or  

Using the right hand quarter cylinder  

Using Pythagoras’ Theorem, AB = a2 − h2  

Question 13 (b) (ii)  

 Criteria  Marks 

 •  Provides correct solution  2 
 •   Finds correct integral expression for the volume, or equivalent merit  1 

Sample answer: 

Area of the slice ABCD = a2 − h2 

Hence, the volume is given by 

a 

V = 
⌠ (a2 − h2 )dh⎮
⌡0 

a⎡ h3 ⎤ 
= a2h −
⎣⎢ 3 ⎦⎥ 0
 

3
2a= units3 

3 

– 16 – 
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Question 13 (c) (i)  

 Criteria  Marks 

 •  Provides correct solution  2 

 • Correctly finds 
dS 
dt 

 in terms of 
dr 
dt 

  , or equivalent merit  1 

Sample answer:  

1 

2 dS ⎛ 4π
 ⎞ 3 dS dS dr
S = 4πr  and =
   and =
 ⋅


dt ⎝
 3
 ⎠ dt dr dt 
dS dr ∴
 = 8πr 
dt dt 

1 

⎛ 4π
 ⎞ 3 dr 
so = 8πr⎝
 3
 ⎠ dt 

 

1 
dr 1 ⎛ 4π
 ⎞ 3giving  =
 
dt 8πr ⎝
 3
 ⎠
 

Question 13 (c) (ii)  

 Criteria  Marks 

 •  Provides correct solution  2 

 • Correctly finds 
dV 
dt 

 in terms of 
dr 
dt 

  , or equivalent merit  1 

Sample answer:  

dV dV dr =
 ⋅

dt dr dt 
dV 2 dr = 4πr
dt dt 

1 

πr2 1
 ⎛ 4π ⎞= 4 ⋅ 3    by (i) 
8πr ⎝
 3
 ⎠ 

1  
1
 ⎛ 4π ⎞ 3 = r 
2
 ⎝
 3
 ⎠ 

1 
1
 ⎛ 3 4π
 ⎞= 3
 r ⋅
2
 ⎝
 3 ⎠
 

1
dV 1 = V 3
dt 2 

 

– 17 – 
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Question 13 (c) (iii)  

 Criteria  Marks 

 •  Provides correct solution  2 
 •    Finds correct primitive for t in terms of V, or equivalent merit  1 

Sample answer:  

1
dV 1 

As = V 3
dt 2 

⌠
dV 1⌠

so ⎮ =
 dt

⎮ 1 ⎮2 ⌡ 
 
 ⌡
V 3

⌠64 000 1 t − 1
 ⌠ 
⎮ V 3 dV = ⎮ dt 
⌡ 2 

8 
 000 ⌡0  

⎡ 64 000 2
1
 
 ⎤


∴
 t = ⎢ .V 3 ⎥  3
2
 ⎢ ⎥
⎣
2
 ⎦
8 000 

t = 3 ( 402 − 202 ) 

∴
 time = 3  600  seconds 

(= 1  hour) 

– 18 – 
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Question 14 (a) (i)  

 Criteria  Marks 

 •  Provides correct solution  2 

 • Attempts to differentiate and obtains an expression involving cos2θ , 
  or equivalent merit 

 1 

Sample answer:  

−y   = sinn 1θ cosθ

y′ = u ′v + v ′u Let  u = sinn−1θ v = cosθ  

u′ = ( n −1)sinn−2θ cosθ v′ = −sinθ 
 
′ −y  = ( n −1)sinn 2θ cos2θ + sinn−1θ ( −sinθ ) 

= ( n −1)sinn−2θ (1 − sin2θ ) − sinnθ 
 

= ( n −1)sinn−2θ − ( n −1)sinnθ − sinnθ 

= ( n −1)sinn−2θ − nsinnθ 

– 19 – 
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Question 14 (a) (ii)  

 Criteria  Marks 

 •  Provides correct solution  2 
 •   Attempts to evaluate the integral of the expression from part (i), 

  or equivalent merit  1 

Sample answer:  

dy
y′ = = (n −1)sinn−2θ − nsinnθ 

dθ 

π π 

⌠ 2 ⌠ 2 

⎮ dy = ⎮ (n −1)sinn−2θ − nsinnθ dθ 
⌡0 ⌡0 

π	 ππ 
⌠ 2	 ⌠ 2⎡ y ⎤ 2 = (n −1) sinn−2θ dθ − n sinnθ dθ⎣⎢ ⎦⎥ 0	 
⎮ ⎮
⌡0 ⌡0 

π	 ππ 
⌠ 2 ⌠ 2⎡	 ⎤ 2sinn−1θ cosθ = (n −1)⎮ sinn−2θ dθ − n ⎮ sinnθ dθ

⎣⎢	 ⎦⎥ 0 ⌡0	 ⌡0 

π π
 

⌠ 2 ⌠ 2
 
0 = (n −1)⎮ sinn−2θ dθ − n ⎮ sinnθ dθ 

⌡0 ⌡0 

π π 

⌠ 2 ⌠ 2 
n⎮ sinnθ dθ = (n −1)⎮ sinn−2θ dθ 
⌡0 ⌡0 

π π 

⌠ 2 ⎛ n −1⎞ ⌠ 2 

⎮ sinnθ dθ = 
⎝⎜ ⎠⎟ ⎮ sinn−2θ dθ 

n⌡0	 ⌡0 

– 20 – 
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Question 14 (a) (iii) 

Criteria Marks 

• Provides correct solution 1 

Sample answer: 

π π 

sin4θ dθ 
0 

⌠ 2 

⌡
⎮ = 

4 −1 

4 
sin2θ dθ 

0 

⌠ 2 

⌡
⎮ 

⎡ π ⎤ 
= 

3 

4 ⎣ 

⎢ 
⎢ 

2 −1 

2 
⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

0 

⌠ 2 

⌡
⎮ dθ 

⎦ 

⎥ 
⎥ 

= 
3 

4 
× 

1 

2 
⎡ θ⎣ 

⎤ 
⎦ 0 

π 
2 

= 
3 

8 

π 
2 
− 0⎛ 

⎝⎜ 
⎞ 
⎠⎟ 

3π = 
16 

Question 14 (b) (i) 

Criteria Marks 

• Provides correct solution 1 

Sample answer: 

bα + β + γ = − = 0 
a 

cαβ +αγ + βγ = = − p 
a 

(α + β + γ )2 
= 0 

ie α 2 + β 2 + γ 2 + 2(αβ +αγ + βγ ) = 0 

16 − 2 p = 0 

∴ p = 8 

– 21 – 
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Question 14 (b) (ii)  

 Criteria  Marks 

 •  Provides correct solution  2 

 • , β3 , γ3  Obtains a correct equation involving q and at least one of α3 , 
  or equivalent merit 

 1 

Sample answer:  

α  is a   root  so 

α 3 = pα − q (1) 

similarly β3 = pβ − q (2) 

γ 3 = pγ − q (3) 
 adding (1)  +  (2)  +  (3) 

α 3 + β3 + γ 3 = p(α + β + γ ) − 3q 

−9 = p × 0 − 3q 

∴ q = 3 

Question 14 (b) (iii)  

 Criteria  Marks 

 •  Provides correct solution  2 

β4 + •   Obtains an equation involving α4 +      γ 4, or equivalent merit  1 

Sample answer: 

Since α 3 = pα − q 

so α 4 = pα 2 − qα 

similarly β 4 = pβ 2 − qβ 

γ 4 = pγ 2 − qγ 

adding α 4 + β 4 + γ 4 = p(α 2 + β 2 + γ 2) − q(α + β + γ ) 
= 8 ×16 − q × 0 

= 128 

– 22 – 
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Question 14 (c) (i)  

 Criteria  Marks 

 •  Provides correct solution  3 
 •   Provides correct resolution of forces, or equivalent merit  2 
 •   Resolves forces in vertical direction, or equivalent merit  1 

Sample answer: 

Resolving forces:
 

Vertically N cosθ − µN sinθ = mg (1)
 
2mv

Horizontally N sinθ + µN cosθ = (2) 
r 

Dividing (2) by (1) 

2sinθ + µ cosθ v= 
cosθ − µ sinθ rg 

⎛sinθ + µ cosθ⎞∴ v2 = rg 
⎝⎜ cosθ − µ sinθ⎠⎟ 

cosθ
Dividing by : 

cosθ
⎛ tanθ + µ ⎞2v = rg 
⎝⎜1− µ tanθ⎠⎟ 

– 23 – 
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Question 14 (c) (ii)  

 Criteria  Marks 

 •  Provides correct solution  2 

 • Obtains correct expression for tanθ     in terms of µ, or equivalent merit  1 

Sample answer:  

Since v = V 

⎛ tanθ + µ ⎞
V 2 = rg and V 2 = rg 

⎝⎜1− µ tanθ⎠⎟ 

tanθ + µ
so = 1 

1− µ tanθ 

hence 

tanθ + µ = 1− µ tanθ 

µ + µ tanθ = 1− tanθ 

1− tanθ 
so µ = 

1+ tanθ 
π

since 0 <θ < , tanθ > 0 
2 

so  1− tanθ < 1 and 1+ tanθ > 1 

∴ µ < 1 

– 24 – 
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Question 15 (a) (i)  

 Criteria  Marks 

 •  Provides correct solution  2 

 • Obtains x!!  = –kv2   , or equivalent merit  1 

Sample answer:  

x!!= −kv2
 

dv
 = −kv2 

dt 
dv

kdt = − 2v

⌠ dv⇒ kt = −⎮ 2
⌡ v

1
kt = + C 

v 

1
Now t = 0, v = u ⇒ C = − 

u 

1 1∴ = kt + 
v u 

– 25 – 
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Question 15 (a) (ii)  

 Criteria  Marks 

 •  Provides correct solution  3 
 •    Correctly integrates to find t, or equivalent merit  2 

 • Obtains x!!  = –g – kw2   , or equivalent merit  1 

Sample answer: 

x!!= −g − kw2 

dw = −(g + kw2)
dt 
dt 1 = − 
dw g + kw2 

∴


⌠ 1
 
t = − ⎮ dw 

⌡
 g + kw2 

⌠ 1
 1
 = −
 ⎮ dw 
k ⎮ g 2
⌡ + w

k 

1 ⎡
  ⎛
 k ⎞
⎤
k  
= ⎢ −
 −
 tan 1

⎜w ⎥ +⎟  C

k ⎢ g ⎝ g 
 ⎠⎥⎣ 

 ⎦


1
 ⎛
 k ⎞
∴ − t = − tan 1
⎜w +⎟  C


gk ⎝ g 
 ⎠


Now  t = 0,  w = u,  so 

1
 ⎛
 k ⎞

C =
 tan−1

⎜u ⎟gk ⎝
 g ⎠



 
1
 ⎛ ⎛
 k ⎞
 ⎛
 k ⎞
⎞∴ t = ⎜tan−1 − − tan 1
⎜u ⎟ ⎜w ⎟⎟gk ⎜ ⎝ g ⎠ ⎝ g 
 
 
 ⎠
⎟

 ⎝
 ⎠
 
 

– 26 – 
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Question 15 (a) (iii) 

Criteria Marks 

• Provides correct solution 1 

Sample answer: 

The second particle is at rest when w  = 0  
 

1
 ⎛
 k ⎞
∴ t = tan−1
⎜u ⎟gk ⎝ g 
 ⎠


At  this t ime  the  velocity of  the  first  particle  is 

⎛
 ⎛
 ⎞
⎞
1 1
 1
 k  
= tan−
 + k ⎜ 1 

⎜u ⎟⎟  from  (i) 
V
 u ⎜ gk ⎝  
 g ⎟⎝
 ⎠
⎠
 

1 1 k 
 

∴
 = +
 tan−1 ⎛ k ⎞


 ⎜u ⎟V u g ⎝ g 
 ⎠


Question 15 (a) (iv) 

Criteria Marks 

• Provides correct solution 1 

Sample answer:  

1 1 k ⎛ k ⎞ 
From  (iii), = + tan−1 

⎜u  ⎟ V u g ⎝ g ⎠

1 ⎛ −1 k ⎞ π
for  u  range, ≈ 0,  tan ≈⎜u ⎟    u ⎝ g ⎠ 2

1 k π 2 g∴ ! ⋅ ⇒ V ≈ 
V g 2 π k 

 

– 27 – 
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Question 15 (b) (i)  

 Criteria  Marks 

 •  Provides correct solution  2 
 •  Obtains one of the required inequalities  1 

Sample answer:  

Since for x ≥ 0 

1− x2 ≤ 1 ie (1− x)(1+ x) ≤ 1 

since (1+ x) > 0 we have 1− x ≤ 
1 

1+ x 

and since x ≥ 0 then 1+ x ≥ 1 

1∴ ≤ 1 
1+ x 

1∴ 1− x ≤ ≤ 1 
1+ x 

– 28 – 
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Question 15 (b) (ii)  

 Criteria  Marks 

 •  Provides correct solution  2 
 •    Integrates the inequalities from part (i), or equivalent merit  1 

Sample answer:  

⌠ b 
 1 b 

Since    ⎡  ⎤⎮   dx = ln(1+ x)
⌡ 1+ x ⎣ ⎦ a

a 

= ln(1+ b) − ln(1+ a) 

⎛ 1⎞ 1
We want   ln +⎜1  ⎟  so let   a = 0  and b =   ⎝ n⎠ n 

1 1 1
 
⌠ n ⌠ n 1 ⌠ n
 

∴ ⎮ 1− x dx ≤ ⎮ dx ≤  ⎮ 1dx
⌡ ⌡ 1+ x

0 0 ⌡0
 
 

1
 

⎡ ⎤ 1 12  x n ⎡ ⎤ ∴⎢ n
x − ⎥ ≤ ln (1+ x ≤ ⎡x⎤ n

⎢   ⎣ ⎦ 
⎣⎢  2 ⎣ )⎦⎥⎦⎥ 000 

1 1 ⎛ 1⎞ 1∴ − ≤ ln + ≤⎜1   ⎟ n 2n2 ⎝ n⎠ n 

multiplying through by n: 

1 ⎛ 1⎞ 
1− ≤ n ln 1+⎜  ≤⎟  1   2n ⎝ n ⎠

– 29 – 
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Question 15 (b) (iii) 

Criteria Marks 

• Provides correct explanation 1 

Sample answer:  

1
 ⎛ 1
 ⎞From  (ii),  1−
 ≤ n ln 1+ ≤ 1
 
2n ⎝ n ⎠


1
 ⎛ 1⎞ n 

⇒ 1− ≤ ln 1+ ≤ 1
 
2n ⎝ n ⎠


⎛ 1
 ⎞ ⎛ 1
 ⎞ n

lim 1−
 ≤ lim ln 1+ ≤ lim 1
 
n→∞ ⎝
 2n ⎠
 n→∞ ⎝ n ⎠
 n→∞ 

 
⎛ 1
 ⎞ n

ie 1 ≤ lim ln 1+ ≤ 1

n→∞ ⎝ n ⎠


⎛ 1
 ⎞ n

⇒ lim ln 1+ = 1
 
n→∞ ⎝ n ⎠


⎛ 1
⎞ n

⇒ lim 1+
 = e 
n→∞ ⎝
 n ⎠


Question 15 (c) (i) 

Criteria Marks 

• Provides correct proof 1 

Sample answer:  

Replacing x  with x2,  y  with y2  in the  given inequality we  have 

x2 + y2
x2y2 ≤ 

2 

x2 + y2  
ie xy ≤ 

2 

x2 + y2 
so xy ≤ ,  since  x, y > 0 

2 
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Question 15 (c) (ii)  

 Criteria  Marks 

 •  Provides correct proof  2 

 • 2 , b2 Uses (i) to obtain a valid expression in a , c  2 and d2, or equivalent 
 merit 

 1 

Sample answer:  

(ab)(cd ) = ab cd 

a2 + b2 c
2 + d2
 
≤ by (i) 

2 2
 

⎛ a2 + b2 ⎞ ⎛ c2 + d2 ⎞

≤ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎟

2 2
 ⎠

1 ⎛ a2 + b2 + c2 + d2 ⎞

≤ ⎜ ⎟
 by given inequality  

2 ⎝ 2 ⎠

a2 + b2 + c2 + d2
 
= 

4 
Taking positive  square  roots, 

a2 + 2 
4 b + c2 + d2 
(abcd ) ≤ 

4 
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Question 16 (a) (i)  

 Criteria  Marks 

 •  Provides correct solution  2 

 • Shows total number of arrangements is 
⎛ 
 ⎝⎜
15 ⎞ 

 ⎠⎟5 
  , or equivalent merit  1 

Sample answer: 

⎛15 ⎞
There are 

⎠⎟ 
ways to place 5 black counters in the grid.

⎝⎜ 5 

There are three choices to place a black counter in each column, so there are 35 ways to place 
the black counters with one in each column. 

35 81∴Probability = = 
⎛15⎞ 1001
 
⎝⎜ 5 ⎠⎟
 

Question 16 (a) (ii)  

 Criteria  Marks 

 •  Provides correct solution  2 

 • Shows total number of arrangements is 
⎛ 
 ⎝⎜
nq 

q 
⎞ 
 ⎠⎟

  , or equivalent merit  1 

Sample answer:  

⎛nq⎞ 
There are nq  places and we choose q  places for black counters, giving ⎜⎝ ⎟   

q ⎠ 
arrangements.

 
There are n  places for each black counter in each of q  columns.
  
 
So there are nq  arrangements with one black counter in each column.
  
 

nq

Pn =  
⎛ nq⎞ 
⎜⎝ ⎟q ⎠ 
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Question 16 (a) (iii)  

 Criteria  Marks 

 •  Provides correct solution  2 
 • Obtains an expression for P  n 

merit  
   with q terms in denominator, or equivalent 

 1 

Sample answer:  

nq

Pn = 
⎛ nq⎞
 
⎜⎝ ⎟q ⎠
 

nq


= 
nq ( nq −1) … (nq − q +1 ) q!

q!nq 

= 
nq ( nq −1) … (  nq − q +1) 

q! = 
⎛ 1 ⎞ ⎛ 2⎞ ⎛ q 1 ⎞q q − q − … q − +⎝ n ⎠ ⎝ n ⎠ ⎝ n n ⎠

As  n →∞, 

q!
Pn → q

 q
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Question 16 (b) (i)  

 Criteria  Marks 

 •  Provides correct solution  2 
 •    Applies De Moivre’s theorem, or equivalent merit  1 

Sample answer:  

By De Moivre’s theorem 

( )2n ( ( )cosα + isinα = cos 2nα ) + isin 2nα 

By the  bionomial  theorem, 

(cosα + isinα )2n = cos2n ⎛ 2n⎞ ⎛ 2n⎞α + − 2n 1
⎜ ⎟ cos α .isinα + 2n−2

⎜ ⎟ cos α (isinα )2 +…
⎝ 1 ⎠ ⎝ 2 ⎠

⎛ 2n ⎞ 2 ⎛ 2n ⎞ ⎛ 2n⎞ + ⎜ ⎟ cos α (isinα )2n−2 +   cosα (isinα )2n− 1 +   (⎟ isinα )2n
⎜ ⎟ ⎜⎝ 2n − 2 ⎠ ⎝ 2n −1 ⎠ ⎝ 2n ⎠

Equating real parts, 

⎛ 2n⎞ ⎛ 2n ⎞( 2nα − )n−1 + (−1

⎝⎜ 2 ⎝⎜ 2n − 2
 

cos 2nα ) = cos
⎠⎟ 

cos2n−2α sin2α +…+ 
⎠⎟ 

cos2α sin2n−2α (−1 )n sin2nα 

Question 16 (b) (ii)  

 Criteria  Marks 

 •  Provides correct solution  2 

 • Explains the connection between T2n (x)  and cos ( 2nα )  , or equivalent 
 1 

 merit 

Sample answer: 

T2n x ( x)( ) = cos 2n cos−1 

put α = cos−1 x, so x = cosα in (i) 

)k 
noting that sin2k α = (sin2α 

= (1− cos2α )k 

Then 

T2n ( ) x = x2n − ⎛ 
2n 

⎠⎟
⎞ 

x2n−2 (1− x2 ) +…+ (−1)n (1− x2 )n 

⎝⎜ 2 
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Question 16 (b) (iii)  

 Criteria  Marks 

 •  Provides correct solution  3 

 • Shows that the roots of T2n (x)  are cos  

⎛ ( 4n − 1)π ⎞ cos   , or equivalent merit   ⎝⎜ ⎠⎟4n 

⎛ 
⎝ 
π 
4n 

⎞ 
⎠ , cos ⎛ ⎝ 

3π ⎞ 
4n ⎠ 

 , … , 

 2 

 • Obtains (or verifies) that cos 

  or equivalent merit 

⎛ 
 ⎝⎜
( 2k − 1)π ⎞ 

 ⎠⎟4n 
 are all roots of T2n (x) , 

 1 

Sample answer:  

0 = T ( 2n x) = cos ( 2 −n cos 1 x)
−1 (2k −1)π

This  occurs  when 2n cos x = 
2 

(2k −1)π
 ie   cos−1x = 

4n  
⎛ (2k −1)π ⎞ x = cos ⎜ ⎟⎝  

4n ⎠
Consider  the  2n  solutions  with k = 1,  2,  …,  2n    ie 

⎛ π ⎞ ⎛ 3π ⎞ ⎛ (4n −1)π ⎞ cos ,  cos ,  …  ,  cos ⎜ ⎟ 
 ⎝ 4n ⎠ ⎝ 4n ⎠ ⎝ 4n ⎠
 
As the angles are in the range 0 to π and are distinct these solutions are distinct. (Given that 
cosx  is decreasing for 0 ≤ x ≤ π .)  
 
We have 2n  distinct solutions of a polynomial of degree 2n, and so these are all the roots.  
 
As we have a polynomial of even degree, the product of the roots is the constant term divided 
by the leading term. We may find the constant term by setting x = 0,  obtaining (−1)n .  
 
The coefficients of x2n are  

⎛ 2n⎞ ⎛ 2n⎞
1, ⎜ ⎟ , ⎜ 1
 ⎝ ⎝ ⎟ ,  …  ,  

2 ⎠ 4 ⎠

The  leading term is the sum of these and hence  

⎛ π ⎛ 3π ⎞ ⎛ (4n −1)π ⎞ (−1)n⎞  
 cos cos cos ⎜ ⎟ =  ⎝ 4n ⎠ ⎝ ⎠ ⎝ ⎠   4n  4n ⎛ 2n⎞ ⎛ 2n⎞

1+ ⎜ ⎟ +  2 ⎠ ⎜ ⎟ +…+1
⎝ ⎝  4 ⎠

In fact the denominator on the right may be simplified  

⎛ π ⎞ ⎛ 3π ⎞ ⎛ (4n −1)π ⎞ (−1)n 

cos cos cos ⎜ ⎟ = ⎝   4n ⎠ ⎝ 4n ⎠ ⎝ 4n ⎠ 22n−1  
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Question 16 (b) (iv)  

 Criteria  Marks 

 •  Provides correct proof  2 

 • Evaluates T2n 
⎛ 
 ⎝⎜

1 ⎞ 
 ⎠⎟   , or equivalent merit  1 

2 

Sample answer:  

1 1
Put   x =   then 1− x2 = 

2 2 

⎛ 1 ⎞ 1 ⎛ 2n⎞ 1 ⎛ 2n ⎞ 1 n ⎛ 2n⎞ 1 
T2n = − ⋅  ⋅  +  +…+ (−1) ⋅ ⎝   ⎜ ⎟2 ⎠ n ⎜ ⎟2 ⎝ 2 ⎠ 2n ⎝ 4 ⎠ 2n ⎜ ⎟⎝ 2n ⎠ 2n

 
⎛ − 1 ⎞ ⎛ nπ ⎞= cos 2n cos 1 = cos ⎝ 2 ⎠ ⎝ 2 ⎠

⎛ 2n⎞ ⎛ 2n⎞ ⎛ 2n⎞ n ⎛ 2n⎞ n ⎛ nπ ⎞∴1−    + ⎜ ⎟ − ( )⎜ ⎟ ⎜ ⎟ +…+ −1 ⎜ ⎟ = 2 cos 
⎝ 2 ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 4 6 2n ⎝ 2 ⎠ 
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2015 HSC Mathematics Extension  2  
Mapping Grid  

Section I 

Question Marks Content Syllabus outcomes 

1 1 3.2 E3 

2 1 2.1 E3 

3 1 1.4 E6 

4 1 7.2 E4 

5 1 2.4 E3 

6 1 4.1 E8 

7 1 8 HE3, E9 

8 1 1.7 E6 

9 1 2.2 E3 

10 1 8 E2 

Section II 

Question Marks Content Syllabus outcomes 

11 (a) 2 2.1 E3 

11 (b) (i) 1 2.2 E3 

11 (b) (ii) 1 2.2 E3 

11 (b) (iii) 1 2.2 E3 

11 (c) 2 7.6 E4 

11 (d) 2 3.1 E3 

11 (e) 3 1.8 E6 

11 (f) (i) 2 4.1 PE6, E2 

11 (f) (ii) 1 4.1 E8 

12 (a) (i) 1 2.2 E3 

12 (a) (ii) 1 2.2 E3 

12 (a) (iii) 1 2.3 E3 

12 (b) (i) 3 7.4, 7.5 E3, E4 

12 (b) (ii) 1 7.4, 7.5 E3, E4 

12 (c) (i) 2 1.8 E6 

12 (c) (ii) 2 1.8 E6 

12 (d) 4 5.1 E7 

13 (a) (i) 1 3.2 E3 

13 (a) (ii) 2 3.2 E3 

13 (a) (iii) 3 3.2 E3 

13 (b) (i) 1 8 E2 
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Question Marks Content Syllabus outcomes 

13 (b) (ii) 2 5.1 E7 

13 (c) (i) 2 14.1E, 8 HE3, E8 

13 (c) (ii) 2 14.1E, 8 HE3, E8 

13 (c) (iii) 2 14.1E, 8, 4.1 HE3, E8 

14 (a) (i) 2 4.1 E8 

14 (a) (ii) 2 4.1 E8 

14 (a) (iii) 1 4.1 E8 

14 (b) (i) 1 7.5 E4 

14 (b) (ii) 2 7.5 E4 

14 (b) (iii) 2 7.5 E4 

14 (c) (i) 3 6.3.4 E5 

14 (c) (ii) 2 6.3.4 E5 

15 (a) (i) 2 6.2.1 E5 

15 (a) (ii) 3 6.2.2 E5 

15 (a) (iii) 1 6.2.1, 6.2.2 E5 

15 (a) (iv) 1 6.2.1 E5 

15 (b) (i) 2 8, 3, 1.4E E2, HE7 

15 (b) (ii) 2 8, 1.4E, 12.5 PE3, HE7, E2 

15 (b) (iii) 1 8, 1.4E PE3, E2 

15 (c) (i) 1 8.3 E2 

15 (c) (ii) 2 8.3 E2 

16 (a) (i) 2 8 E2 

16 (a) (ii) 2 8 E2 

16 (a) (iii) 2 8 E2 

16 (b) (i) 2 2.4 E3 

16 (b) (ii) 2 8 E4 

16 (b) (iii) 3 7.5 E4 

16 (b) (iv) 2 7.5 E9 
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