

2015 HSC Mathematics Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	С
3	А
4	А
5	В
6	С
7	В
8	С
9	D
10	А

Section II

Question 11 (a)

	Criteria	Marks
•	Provides correct answer	1

Sample answer:

4x - (8 - 6x)= 4x - 8 + 6x= 10x - 8

Question 11 (b)

	Criteria	Marks
•	Provides correct solution	2
•	Finds common factor of 3, or equivalent merit	1

Sample answer:

$$3x^{2} - 27$$

= 3(x² - 9)
= 3(x - 3)(x + 3)

Question 11 (c)

	Criteria	Marks
•	Provides correct solution	2
•	Attempts to use $2 - \sqrt{7}$, or equivalent merit	1

$$\frac{8}{2+\sqrt{7}} = \frac{8}{2+\sqrt{7}} \times \frac{2-\sqrt{7}}{2-\sqrt{7}}$$
$$= \frac{8(2-\sqrt{7})}{4-7}$$
$$= \frac{8(2-\sqrt{7})}{-3}$$
$$= \frac{8\sqrt{7}-16}{3}$$

Question 11 (d)

	Criteria	Marks
•	Provides correct solution	2
•	Identifies the common ratio, or equivalent merit	1

Sample answer:

$$a = 1 \qquad r = -\frac{1}{4}$$
$$S = \frac{a}{1-r}$$
$$= \frac{1}{1-\left(-\frac{1}{4}\right)}$$
$$= \frac{4}{5}$$

Question 11 (e)

	Criteria	Marks
•	Provides correct derivative	2
•	Attempts to use chain rule, or equivalent merit	1

Let
$$y = (e^{x} + x)^{5}$$

$$\frac{dy}{dx} = 5(e^{x} + x)^{4} \times (e^{x} + 1)$$
$$= 5(e^{x} + 1)(e^{x} + x)^{4}$$

Question 11 (f)

	Criteria	Marks
•	Provides correct derivative	2
•	Attempts to use product rule, or equivalent merit	1

Sample answer:

Let
$$u = x + 4$$
 $v = \ln x$
 $u' = 1$ $v' = \frac{1}{x}$
 $\therefore y' = u'v + v'u$
 $= 1.\ln x + \frac{1}{x}(x + 4)$
 $= \ln x + \frac{x + 4}{x}$

Question 11 (g)

	Criteria	Marks
•	Provides correct solution	2
•	Provides correct primitive, or equivalent merit	1

$$\int_{0}^{\frac{\pi}{4}} \cos 2x \, dx = \left[\frac{1}{2}\sin 2x\right]_{0}^{\frac{\pi}{4}}$$
$$= \frac{1}{2}\sin\frac{\pi}{2} - \frac{1}{2}\sin 0$$
$$= \frac{1}{2} - 0$$
$$= \frac{1}{2}$$

Question 11 (h)

	Criteria	Marks
•	Provides correct primitive	2
•	Recognises $\frac{f'(x)}{f(x)}$, or equivalent merit	1

$$\int \frac{x}{x^2 - 3} dx$$
$$= \frac{1}{2} \int \frac{2x}{x^2 - 3} dx$$
$$= \frac{1}{2} \ln(x^2 - 3) + C$$

Question 12 (a)

	Criteria	Marks
•	Provides correct solutions	2
•	Provides one correct solution, or equivalent merit	1

Sample answer:

Question 12 (b) (i)

	Criteria	Marks
•	Provides correct solution	2
•	Attempts to use the fact that the diagonals are perpendicular, or equivalent merit	1

$$\ell_1 \text{ is } y = m_1 x + b$$

 $\ell_2 \text{ is } y = -\frac{x}{3} \Rightarrow m_2 = -\frac{1}{3}$
 $\ell_1 \perp \ell_2 \qquad OABC \text{ rhombus (diagonals } \ell_1, \ell_2 \text{ are perpendicular)}$

$$m_1 m_2 = -1$$
$$m_1 \times \left(-\frac{1}{3}\right) = -1$$
$$\therefore m_1 = 3$$
$$\ell_1 \text{ is } y = 3x + b$$
$$11 = 3 \times 7 + b$$
$$b = -10$$
$$\therefore y = 3x - 10$$

Question 12 (b) (ii)

	Criteria	Marks
•	Provides correct coordinates	2
•	Makes some progress towards correct answer	1

Sample answer:

Solving $y = -\frac{x}{3}$ and y = 3x - 10 simultaneously $-\frac{x}{3} = 3x - 10$ x = -9x + 30 10x = 30 x = 3Hence, $y = -\frac{3}{3}$ = -1 $\therefore D(3, -1)$

Question 12 (c)

	Criteria	Marks
•	Provides correct derivative	2
•	Attempts to use the quotient rule, or equivalent merit	1

Let
$$u = x^{2} + 3$$
 $v = x - 1$
 $u' = 2x$ $v' = 1$
 $y' = \frac{u'v - v'u}{v^{2}}$
 $= \frac{2x(x-1) - 1(x^{2} + 3)}{(x-1)^{2}}$
 $= \frac{2x^{2} - 2x - x^{2} - 3}{(x-1)^{2}}$
 $= \frac{x^{2} - 2x - 3}{(x-1)^{2}}$

Question 12 (d)

	Criteria	Marks
•	Provides correct solution	2
•	Evaluates discriminant, or equivalent merit	1

Sample answer:

For real roots, $\triangle \ge 0$

$$\triangle = b^2 - 4ac$$
$$= (-8)^2 - 4(1)(k)$$
$$= 64 - 4k$$
$$\therefore 64 - 4k \ge 0$$
$$64 \ge 4k$$
$$k \le 16$$

Question 12 (e) (i)

	Criteria	Marks
•	Provides a correct equation	2
•	Finds correct gradient, or equivalent merit	1

Sample answer:

$$y = \frac{x^2}{2} \qquad P\left(1, \frac{1}{2}\right)$$
$$\frac{dy}{dx} = x$$
when x = 1, m = 1

The equation of the tangent is

$$y - y_1 = m(x - x_1)$$
$$y - \frac{1}{2} = 1(x - 1)$$
$$\therefore y = x - \frac{1}{2}$$

Question 12 (e) (ii)

	Criteria	Marks
•	Provides a correct equation	1

Sample answer:

Focus
$$S(0, a) = \left(0, \frac{1}{2}\right) \therefore a = \frac{1}{2}$$

Equation directrix is: $y = -a$
 $\therefore y = -\frac{1}{2}$

Question 12 (e) (iii)

	Criteria	Marks
•	Provides correct solution	1

Sample answer:

Tangent:	$y = x - \frac{1}{2}$
Directrix:	$y = -\frac{1}{2}$
Solution:	$-\frac{1}{2} = x - \frac{1}{2}$
	x = 0
$\therefore Q$ lies on	n y-axis

Question 12 (e) (iv)

Criteria	Marks
Provides correct solution	1

Sample answer:

SQ = SO + OQ= $\frac{1}{2} + \frac{1}{2}$ = 1 PS = 1 $\therefore SQ = PS$ $\therefore \triangle PQS$ is isosceles (two equal sides)

Question 13 (a) (i)

	Criteria	Marks
•	Provides correct solution	1

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
$$\cos A = \frac{8^2 + 6^2 - 4^2}{2 \times 8 \times 6}$$
$$= \frac{84}{96}$$
$$= \frac{7}{8}$$

Question 13 (a) (ii)

	Criteria	Marks
•	Provides correct solution	2
•	Finds exact value of $\sin A$, or equivalent merit	1

Sample answer:

Question 13 (b) (i)

ľ	Criteria	Marks
Ī	Provides correct solution	2
ľ	• Identifies –3 and 3 as important values, or equivalent merit	1

Domain:	$9 - x^2 \ge 0$
	$x^2 \le 9$
	$-3 \le x \le 3$
Range:	$0 \le y \le 3$

Question 13 (b) (ii)

	Criteria	
•	Shades correct region	2
•	Shades a region involving the correct semicircle, or equivalent merit	1

Question 13 (c) (i)

	Criteria	Marks
•	Provides correct solution	4
•	Finds coordinates of both stationary points, or equivalent merit	3
•	Factorises quadratic in $\frac{dy}{dx} = 0$ correctly, or equivalent merit	2
•	Attempts to solve $\frac{dy}{dx} = 0$, or equivalent merit	1

Sample answer:

$$y = x^{3} - x^{2} - x + 3$$
$$y' = 3x^{2} - 2x - 1$$
$$y'' = 6x - 2$$

Stationary points when y' = 0 ie $3x^2 - 2x - 1 = 0$ (3x + 1)(x - 1) = 0 $\therefore x = -\frac{1}{3}$ or x = 1when $x = -\frac{1}{3}$, $y = 3\frac{5}{27}$ and y'' = -4 < 0 (cd) $\therefore \left(-\frac{1}{3}, 3\frac{5}{27}\right)$ is a local maximum when x = 1, y = 2 and y'' = 4 > 0 (cu) $\therefore (1, 2)$ is a local minimum

Question 13 (c) (ii)

	Criteria	Marks
•	Provides correct solution	2
•	Shows second derivative = 0 at $x = \frac{1}{3}$, or equivalent merit	1

Sample answer:

$$P\left(\frac{1}{3}, \frac{70}{27}\right)$$

Point of inflexion where y'' = 0 and concavity changes

ie
$$6x - 2 = 0$$

 $x = \frac{1}{3}$

There is a point of inflexion at $x = \frac{1}{3}$ since from (i) concavity changes (maximum at

$$x = -\frac{1}{3}$$
 and minimum at $x = 1$).

Question 13 (c) (iii)

	Criteria	Marks
•	Provides correct sketch	2
•	Correctly plots and labels stationary points and point of inflexion, or equivalent merit	1

Question 14 (a) (i)

	Criteria	Marks
•	Provides correct solution	2
•	Provides correct expression for \dot{x} including determination of the constant, or equivalent merit	1

Sample answer:

 $:: C_2 = 110$

 $\therefore x = -5t^2 + 110$

 $\ddot{x} = -10, \qquad t = 0, \ x = 110, \ \dot{x} = 0$ $\dot{x} = \int -10 \, dt$ $= -10t + C_1$ When $t = 0, \ \dot{x} = 0$ $\therefore 0 = -10(0) + C_1$ $\therefore C_1 = 0$ $\therefore \dot{x} = -10t$ Now, $x = \int -10t \, dt$ $= -5t^2 + C_2$ When $t = 0, \ x = 110$ $\therefore 110 = -5(0)^2 + C_2$

Question 14 (a) (ii)

	Criteria	Marks
•	Provides correct solution	2
•	Finds correct time when brakes are applied, or equivalent merit	1

Sample answer:

When
$$\dot{x} = -37$$

 $-37 = -10t$
 $t = \frac{37}{10}$
 $\therefore x = -5\left(\frac{37}{10}\right)^2 + 110$
 $= 41.55$

:. It has fallen (110 - 41.55) m

= 68.45 m

Question 14 (b) (i)

	Criteria	Marks
•	Provides correct solution	1

Sample answer:

P(Saturday dry) = P(WD) + P(DD)

$$= \frac{1}{2} \times \frac{5}{6} + \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{2}{3}$$

Question 14 (b) (ii)

	Criteria	Marks
•	Provides correct solution	2
•	Provides correct expression for probability of one of Saturday or Sunday being wet, or equivalent merit	1

Sample answer:

P(both Saturday and Sunday wet)

$$= P(WWW) + P(DWW)$$

$$= \frac{1}{2} \times \frac{1}{6} \times \frac{1}{6} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{6}$$
$$= \frac{1}{72} + \frac{1}{24}$$
$$= \frac{1}{18}$$

Question 14 (b) (iii)

	Criteria	Marks
•	Provides correct solution	1

Sample answer:

P(at least one of Saturday and Sunday dry)

$$= 1 - P(\text{both are wet})$$
$$= 1 - \frac{1}{18}$$
$$= \frac{17}{18}$$

Question 14 (c) (i)

	Criteria	Marks
•	Provides correct solution	1

Sample answer:

r = 0.6% per month

= 0.006 per month

$$\begin{split} A_1 &= 100\ 000(1.006) - M \\ A_2 &= A_1(1.006) - M \\ &= \big(100\ 000(1.006) - M\big)(1.006) - M \\ A_2 &= 100\ 000(1.006)^2 - M(1.006) - M \\ &= 100\ 000(1.006)^2 - M(1+1.006) \end{split}$$

Question 14 (c) (ii)

	Criteria	Marks
٠	Provides correct solution	2
•	Recognises the pattern in the expression for A_n as a sum, or equivalent merit	1

$$A_{3} = A_{2}(1.006) - M$$

= 100 000(1.006)³ - M(1.006)² - M(1.006) - M
:
$$A_{n} = 100 000(1.006)^{n} - M [1 + (1.006) + (1.006)^{2} + ... + (1.006)^{n-1}]$$

Now [1 + (1.006) + (1.006)² + ... + (1.006)^{n-1}] is
a geometric series, with *n* terms where *a* = 1 and *r* = 1.006

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
$$= \frac{1((1.006)^n - 1)}{(1.006) - 1}$$
$$\therefore A_n = 100\ 000(1.006)^n - M\left[\frac{1((1.006)^n - 1)}{0.006}\right]$$

Question 14 (c) (iii)

	Criteria	Marks
• Pr	rovides correct solution	1

Sample answer:

M = 780, n = 120

$$A_{120} = 100\ 000(1.006)^{120} - 780 \left[\frac{(1.006)^{120} - 1}{0.006}\right]$$

 $= 68\,499.46$

 \therefore amount owing = \$68500 (nearest \$100)

Question 14 (c) (iv)

	Criteria	Marks
•	Provides correct solution	3
•	Finds correct expression for $(1.006)^n$, or equivalent merit	2
•	Attempts to use $A_n = 0$, or equivalent merit	1

Sample answer:

Since the amount owing is \$48 500,

$$A_n = 48\,500(1.006)^n - 780 \left[\frac{(1.006)^n - 1}{0.006}\right]$$

Let $A_n = 0$ when the amount owing is completely repaid

$$\therefore 48\,500(1.006)^n = 780 \left[\frac{(1.006)^n - 1}{0.006} \right]$$

$$\therefore 291(1.006)^n = 780(1.006)^n - 780$$

$$\therefore 489(1.006)^n = 780$$

$$\therefore (1.006)^n = 1.59509...$$

$$n\log(1.006) = \log(1.59509...)$$

$$n \approx \frac{\log(1.59509)}{\log 1.006}$$

time required ≈ 78.055 months

Question 15 (a) (i)

	Criteria	Marks
•	Provides correct solution	1

Sample answer:

$$C = Ae^{-0.14t}$$
$$\frac{dC}{dt} = -0.14Ae^{-0.14t}$$
$$= -0.14C$$

Question 15 (a) (ii)

	Criteria	Marks
•	Provides correct value of A	1

Sample answer:

When t = 0, C = 130 $130 = Ae^{0}$ $\therefore A = 130$

Question 15 (a) (iii)

	Criteria	Marks
•	Provides correct solution	1

Sample answer:

 $C = 130e^{-0.14t}$ When t = 7, $C = 130e^{-0.14 \times 7}$ ≈ 48.79044285 amount of caffeine ≈ 49 mg

Question 15 (a) (iv)

	Criteria	Marks
•	Provides correct solution	2
•	Attempts to use logarithms to solve $65 = 130e^{-0.14t}$, or equivalent merit	1

Taking
$$C = 65$$

 $65 = 130e^{-0.14t}$
 $\frac{1}{2} = e^{-0.14t}$
 $\ln \frac{1}{2} = -0.14t$
 $t = \frac{\ln \frac{1}{2}}{-0.14}$
 $= 4.95105129$
time taken ≈ 4.95 hours

Question 15 (b) (i)

	Criteria	Marks
•	Provides correct proof	2
•	Shows $\angle FDC$ equal to $\angle ADE$, or $\angle ADE$ equal to $\angle DAE$, or equivalent merit	1

Sample answer:

$\angle FDC = \angle ADE$	(vertically opposite angles equal)
$\angle ADE = \angle DAE$	(base angles, isosceles triangle)
$\therefore \angle FDC = \angle DAE$	
$\angle FCD = \angle ACB$	
= 90°	(given)
$\therefore \triangle ACB \parallel \triangle DCF$	(equal angles)

Question 15 (b) (ii)

	Criteria	Marks
•	Provides correct explanation	1

Sample answer:

 $\angle DFC = \angle ABC$ (corresponding angles in similar triangles)

 $\therefore \triangle EFB$ is isosceles (base angles equal)

Question 15 (b) (iii)

	Criteria	Marks
•	Provides correct solution	2
•	Provides correct relationship between lengths of AB and FD, or drops perpendicular from E onto AD , or equivalent merit	1

Sample answer:

AB = 2FD (using (i), corresponding sides in proportion AC = 2DC) ie AE + EB = 2FDAlso, FD = EF - EDso FD = EB - AE (by (ii) since EF = EB) Hence AE + EB = 2(EB - AE) $\therefore EB = 3AE$

Question 15 (c) (i)

Criteria	Marks
Provides correct solution	2
• Attempts to solve $\frac{dV}{dt} = 0$, or equivalent merit	1

Sample answer:

Set $\frac{dV}{dt} = 0$ $80\sin(0.5t) = 0$ $\sin 0.5t = 0$ $0.5t = 0, \pi, 2\pi, ...$ first starts to decrease when $0.5t = \pi$

so $t = 2\pi$

Question 15 (c) (ii)

	Criteria	Marks
•	Provides correct solution	2
•	Provides correct primitive, or equivalent merit	1

Sample answer:

 $\frac{dV}{dt} = 80\sin(0.5t)$ Integrating, $V = -160\cos(0.5t) + C$ When t = 0, $1200 = -160\cos(0.5 \times 0) + C$ C = 1360Hence, $V = -160\cos(0.5t) + 1360$ When t = 3, $V = -160\cos(0.5 \times 3) + 1360$ Volume ≈ 1349 L

Question 15 (c) (iii)

Criteria	Marks
Provides correct answer	1

Sample answer:

Greatest volume when $\frac{dV}{dt} = 0$ ie when $t = 2\pi$ and volume starts to decrease $V = -160\cos(0.5 \times 2\pi) + 1360$ = 1520volume = 1520 L

Question 16 (a) (i)

	Criteria	Marks
•	Provides correct <i>x</i> -coordinates	1

Sample answer:

When y = 0, $x^2 - 7x + 10 = 0$ $\Rightarrow (x - 2)(x - 5) = 0$ $\therefore x = 2, x = 5$ So *A* is (2,0) and *B* is (5,0)

Question 16 (a) (ii)

	Criteria	Marks
•	Provides correct coordinates	1

Sample answer:

When x = 0, y = 10

 \Rightarrow *C* is (7,10) (by symmetry)

Question 16 (a) (iii)

Criter	ia	Marks
Provides correct solution		1

$$\int_{0}^{2} (x^{2} - 7x + 10) dx = \left[\frac{x^{3}}{3} - \frac{7x^{2}}{2} + 10x\right]_{0}^{2}$$
$$= \left(\frac{2^{3}}{3} - 7 \times \frac{2^{2}}{2} + 10 \times 2\right) - \left(\frac{0^{3}}{3} - 7 \times \frac{0^{2}}{2} + 10 \times 0\right)$$
$$= \frac{26}{3}$$

Question 16 (a) (iv)

	Criteria		
•	Provides correct solution	2	
•	Attempts to find the difference of two areas or integrals, or equivalent merit	1	

By symmetry,
$$\int_{0}^{2} (x^{2} - 7x + 10) dx = \int_{5}^{7} (x^{2} - 7x + 10) dx$$

∴ Shaded area = area of $\triangle -\int_{5}^{7} (x^{2} - 7x + 10) dx$
 $= \frac{1}{2} \times (7 - 2) \times 10 - \frac{26}{3}$
 $= \frac{49}{3}$ units²

Question 16 (b)

	Criteria	Marks
•	Provides correct solution	3
•	Obtains $\pi \int_{0}^{6} e^{\frac{y}{4}} + 2e^{\frac{y}{8}} + 1 dy$, or equivalent merit	2
•	Writes down formula for the volume including limits	
0	1	
•	Writes x as a function of y, or equivalent merit	

Sample answer:

$$V = \pi \int_0^6 x^2 \, dy$$

Now $y = 8\log_e(x-1)$

$$\Rightarrow e^{\frac{y}{8}} = x - 1$$

ie $x = e^{\frac{y}{8}} + 1$

$$\therefore V = \pi \int_{0}^{6} \left(e^{\frac{y}{8}} + 1 \right)^{2} dy$$

$$= \pi \int_{0}^{6} e^{\frac{y}{4}} + 2e^{\frac{y}{8}} + 1 dy$$

$$= \pi \left[4e^{\frac{y}{4}} + 16e^{\frac{y}{8}} + y \right]_{0}^{6}$$

$$= \pi \left[\left(4e^{\frac{3}{2}} + 16e^{\frac{3}{4}} + 6 \right) - (4 + 16 + 0) \right]$$

$$= \pi \left[4e^{\frac{3}{2}} + 16e^{\frac{3}{4}} - 14 \right]$$

volume ≈ 118.7

Question 16 (c) (i)

Criteria			
•	Provides correct solution	3	
•	Uses similar triangles to obtain correct equation relating <i>x</i> and <i>y</i> , or equivalent merit	2	
•	Attempts to use similar triangles, or equivalent merit	1	

Sample answer:

Using similar triangles

$$\frac{H-y}{H} = \frac{x}{R}$$

$$RH - Ry = xH$$

$$RH - xH = Ry$$

$$y = \frac{H(R-x)}{R}$$

$$\therefore V = \pi r^{2}h = \pi x^{2}y$$

$$= \frac{H}{R}(R-x)$$

$$= \frac{H}{R}\pi x^{2}(R-x)$$

Question 16 (c) (ii)

	Marks	
•	Provides correct solution	4
•	Finds the value at which the stationary point occurs and verifies it is a maximum, or equivalent merit	3
•	Finds the value of x at which $\frac{dV}{dx} = 0$, or equivalent merit	2
•	Finds correct expression for $\frac{dV}{dx}$, or equivalent merit	1

Sample answer:

Maximum V occurs when $\frac{dV}{dx} = 0$ and $\frac{d^2V}{dx^2} < 0$ $V = \frac{H}{R}\pi x^2 (R - x) = H\pi x^2 - \frac{H}{R}\pi x^3$ $\frac{dV}{dx} = 2H\pi x - \frac{3H}{R}\pi x^2 = 0$ for maximum $\therefore 0 = \pi Hx \left(2 - \frac{3}{R}x\right)$ x = 0 (discount) or $x = \frac{2R}{3}$ $\frac{d^2V}{dx^2} = 2H\pi - \frac{6H}{R}\pi x$ $= 2H\pi - \frac{6H}{R}\pi \frac{2R}{3}$ at $x = \frac{2R}{3}$ $= 2H\pi - 4H\pi$ $= -2H\pi$ < 0 since H > 0 \therefore Maximum volume when $x = \frac{2R}{3}$ $\therefore V = \frac{H}{R}\pi \left(\frac{2R}{3}\right)^2 \left(R - \frac{2R}{3}\right)$ $= \frac{H}{R}\pi \frac{4R^2}{9} \left(\frac{R}{3}\right)$

$$V = \frac{4H\pi R^2}{27}$$

2015 HSC Mathematics Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	1.1	P3, P4
2	1	6.2	P4
3	1	7.1	Н5
4	1	3.3	Н5
5	1	11.3	H4
6	1	13.4, 13.5, 13.7	Н5
7	1	11.4	Н8
8	1	9.1, 12.1	Н3
9	1	14.3	H4, H5
10	1	12.5	Н3, Н8

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	1	1.3	Р3
11 (b)	2	1.3	P4
11 (c)	2	1.1	Р3
11 (d)	2	7.3	Н5
11 (e)	2	8.9, 12.5	Р7, Н3
11 (f)	2	8.9, 12.5	Р7, Н3
11 (g)	2	11.1, 13.7	Н5
11(h)	2	11.2, 12.5	Н5
12 (a)	2	5.3, 13.1	P4, H5
12 (b) (i)	2	2.3, 6.8	Н5
12 (b) (ii)	2	1.4, 6.3, 6.8	P4, H5
12 (c)	2	8.8	Р7
12 (d)	2	1.4, 9.2, 9.3	P4
12 (e) (i)	2	6.2, 8.5	P4
12 (e) (ii)	1	9.5	P4, P5
12 (e) (iii)	1	1.4, 6.3	P4, P5
12 (e) (iv)	1	2.2, 6.8	P4, H2, H5
13 (a) (i)	1	5.5	P3, P4
13 (a) (ii)	2	5.5	P3, P4

Question	Marks	Content	Syllabus outcomes
13 (b) (i)	2	4.1	Р5
13 (b) (ii)	2	4.1, 4.4	Р5
13 (c) (i)	4	10.2, 10.4	Нб
13 (c) (ii)	2	10.4	Нб
13 (c) (iii)	2	10.5	Нб
14 (a) (i)	2	14.3	H4, H5
14 (a) (ii)	2	14.3	H4, H5
14 (b) (i)	1	3.2, 3.3	Н5
14 (b) (ii)	2	3.2, 3.3	Н5
14 (b) (iii)	1	3.2, 3.3	Н5
14 (c) (i)	1	7.5	H4, H5
14 (c) (ii)	2	7.2, 7.5	H4, H5
14 (c) (iii)	1	7.5	H4, H5
14 (c) (iv)	3	7.5, 12.2	H3, H5
15 (a) (i)	1	14.2	H3, H5
15 (a) (ii)	1	14.2	НЗ
15 (a) (iii)	1	14.2	НЗ
15 (a) (iv)	2	12.2, 14.2	НЗ
15 (b) (i)	2	2.3, 2.5	H2, H5
15 (b) (ii)	1	2.2, 2.5	H2, H5
15 (b) (iii)	2	2.3, 2.5	H2, H5
15 (c) (i)	2	14.1	H4, H5
15 (c) (ii)	2	14.1	H4, H5
15 (c) (iii)	1	14.1	H4, H5
16 (a) (i)	1	9.1	P4
16 (a) (ii)	1	1.4, 4.2	P4
16 (a) (iii)	1	11.1	Н8
16 (a) (iv)	2	11.4	H8, H9
16 (b)	3	11.4, 12.3, 12.5	H3, H4, H8
16 (c) (i)	3	2.3, 2.5	P4, P5
16 (c) (ii)	4	10.6	Н5