

BOARDOFSTUDIES
NEW SOUTH WALES

HIGHER SCHOOL CERTIFICATE EXAMINATION

1997

MATHEMATICS

3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON)

Time allowed-Two hours
(Plus 5 minutes reading time)

Directions to Candidates

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on page 12.
- Board-approved calculators may be used.
- Answer each question in a separate Writing Booklet.
- You may ask for extra Writing Booklets if you need them.

QUESTION 1. Use a separate Writing Booklet.
(a) Differentiate $e^{3 x} \cos x$. 2
(b) Find the perpendicular distance from the point $(1,2)$ to the line $y=3 x+4$.
(c) Given that $\log _{a} b=2 \cdot 8$ and $\log _{a} c=4 \cdot 1$, find $\log _{a}\left(\frac{b}{c}\right)$.
(d) Evaluate $\int_{0}^{2} \frac{d x}{4+x^{2}}$.
(e) Using the substitution $u=2 x+1$, or otherwise, find $\int_{0}^{1} \frac{4 x}{2 x+1} d x$.

QUESTION 2. Use a separate Writing Booklet.
(a)

The points A, B, and C lie on a circle with centre O. The lines $A O$ and $B C$ are parallel, and $O B$ and $A C$ intersect at D. Also, $\angle A C B=26^{\circ}$ and $\angle B D C=y^{\circ}$, as shown in the diagram.

Copy or trace the diagram into your Writing Booklet.
(i) State why $\angle A O B=52^{\circ}$.
(ii) Find y. Justify your answer.
(b) A particle is moving in simple harmonic motion. Its displacement x at time t is given by

$$
x=3 \sin (2 t+5)
$$

(i) Find the period of the motion.
(ii) Find the maximum acceleration of the particle.
(iii) Find the speed of the particle when $x=2$.
(c) The polynomial $P(x)=x^{3}+b x^{2}+c x+d$ has roots 0,3 , and -3 .
(i) Find b, c, and d.
(ii) Without using calculus, sketch the graph of $y=P(x)$.
(iii) Hence, or otherwise, solve the inequality $\frac{x^{2}-9}{x}>0$.

QUESTION 3. Use a separate Writing Booklet.
(a) (i) On the same set of axes, sketch the graphs of $y=2 \sin \theta$ and $y=\theta$ for $-\pi \leq \theta \leq \pi$.
(ii) Use your sketch to find the number of solutions of the equation $2 \sin \theta=\theta$ for $-\pi \leq \theta \leq \pi$.
(b)

The point P lies on the circumference of a semicircle of radius r and diameter $A B$, as shown. The point C lies on $A B$ and $P C$ is perpendicular to $A B$.

The arc $A P$ subtends an angle θ at the centre O, and the length of the arc $A P$ is twice the length of $P C$.
(i) Show that $2 \sin \theta=\theta$.
(ii) Taking $\theta=1.8$ as an approximation for the solution to the equation $2 \sin \theta=\theta$ between $\frac{\pi}{2}$ and π, use one application of Newton's method to give a better approximation.
(c) In each game of Sic Bo, three regular, six-sided dice are thrown once.
(i) In a single game, what is the probability that all three dice show 2?
(ii) What is the probability that exactly two of the dice show 2 ?
(iii) What is the probability that exactly two of the dice show the same number?
(iv) A player claims that you expect to see three different numbers on the dice in at least half of the games. Is the player correct? Justify your answer.

QUESTION 4. Use a separate Writing Booklet.

Marks

(a)

The triangle $A B C$ is isosceles, with $A B=B C$, and $B D$ is perpendicular to $A C$.
Let $\angle A B D=\angle C B D=\alpha$ and $\angle B A D=\beta$, as shown in the diagram.
(i) Show that $\sin \beta=\cos \alpha$.
(ii) By applying the sine rule in $\triangle A B C$, show that $\sin 2 \alpha=2 \sin \alpha \cos \alpha$.
(iii) Given that $0<\alpha<\frac{\pi}{2}$, show that the limiting sum of the geometric series

$$
\sin 2 \alpha+\sin 2 \alpha \cos ^{2} \alpha+\sin 2 \alpha \cos ^{4} \alpha+\sin 2 \alpha \cos ^{6} \alpha+\cdots
$$

is equal to $2 \cot \alpha$.
(b) By using the substitution $x=\sin t$, or otherwise, evaluate $\int_{0}^{\frac{1}{2}} \sqrt{1-x^{2}} d x$.
(c)

A searchlight on the ground at S detects and tracks a plane P that is due east of the searchlight. The plane is flying due west at a constant velocity of 240 kilometres per hour and maintains a constant height of 900 metres above ground level.

Let $\theta(t)$ radians be the angle of elevation of the plane at time t seconds and let $x(t)$ kilometres be the distance from S to the point Q on the ground directly below P.
(i) Show that $\frac{d x}{d \theta}=-\frac{0 \cdot 9}{\sin ^{2} \theta}$.
(ii) Show that the rate of change of the angle of elevation of the plane when $\theta=\frac{\pi}{4}$ is equal to $\frac{1}{27}$ radians per second.

QUESTION 5. Use a separate Writing Booklet.
(a) A particle moves along the x axis, starting at $x=0 \cdot 1$ at time $t=0$. The velocity

$$
v=\sqrt{2 x} e^{-x^{2}}, \quad x \geq 0 \cdot 1
$$

where x is the displacement of the particle from the origin.
(i) Show that the particle has acceleration given by

$$
a=e^{-2 x^{2}}\left(1-4 x^{2}\right), \quad x \geq 0 \cdot 1
$$

(ii) Hence find the fastest speed attained by the particle.
(iii) Show that T, the time taken to travel from $x=1$ to $x=2$, can be expressed as

$$
T=\int_{1}^{2} \frac{1}{\sqrt{2 x}} e^{x^{2}} d x
$$

(iv) Use the trapezoidal rule with three function values to obtain an approximate value for T.
(b) (i) For positive integers n and r, with $r<n$, show that

$$
\binom{n}{r}+\binom{n}{r+1}=\binom{n+1}{r+1}
$$

where $\binom{n}{r}=\frac{n!}{r!(n-r)!}$. Do NOT use induction.
(ii) Use mathematical induction to prove that, for $n \geq 3$,

$$
\sum_{j=3}^{n}\binom{j-1}{2}=\binom{n}{3} .
$$

QUESTION 6. Use a separate Writing Booklet.
(a) The function $f(x)=\sec x$ for $0 \leq x<\frac{\pi}{2}$, and is not defined for other values of x.
(i) State the domain of the inverse function $f^{-1}(x)$.
(ii) Show that $f^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)$.
(iii) Hence find $\frac{d}{d x} f^{-1}(x)$.
(b) An amount $\$ A$ is borrowed at $r \%$ per annum reducible interest, calculated monthly. The loan is to be repaid in equal monthly instalments of $\$ M$.

Let $R=\left(1+\frac{r}{1200}\right)$ and let $\$ B_{n}$ be the amount owing after n monthly repayments have been made.
(i) Show that $B_{n}=A R^{n}-M\left(\frac{R^{n}-1}{R-1}\right)$.

Pat borrows $\$ 30000$ at 9% per annum reducible interest, calculated monthly. The loan is to be repaid in 60 equal monthly instalments.
(ii) Show that the monthly repayments should be $\$ 622.75$.
(iii) With the twelfth repayment, Pat pays an additional $\$ 5000$, so this payment is $\$ 5622.75$. After this, repayments continue at $\$ 622.75$ per month. How many more repayments will be needed?

QUESTION 7. Use a separate Writing Booklet.
(a)

A particle is projected horizontally from a point P, h metres above O, with a velocity of V metres per second. The equations of motion of the particle are

$$
\ddot{x}=0 \text { and } \ddot{y}=-g \text {. }
$$

(i) Using calculus, show that the position of the particle at time t is given by

$$
x=V t, \quad y=h-\frac{1}{2} g t^{2} .
$$

A canister containing a life raft is dropped from a plane to a stranded sailor. The plane is travelling at a constant velocity of $216 \mathrm{~km} / \mathrm{h}$, at a height of 120 metres above sea level, along a path that passes above the sailor.
(ii) How long will the canister take to hit the water? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.)
(iii) A current is causing the sailor to drift at a speed of $3.6 \mathrm{~km} / \mathrm{h}$ in the same direction as the plane is travelling. The canister is dropped from the plane when the horizontal distance from the plane to the sailor is D metres. What values can D take if the canister lands at most 50 metres from the stranded sailor?
(b) \quad (i) \quad Simplify $n\binom{n-1}{1}+n\binom{n-1}{2}+\cdots+n\binom{n-1}{n-2}$.
(ii) Find the smallest positive integer n such that

$$
n\binom{n-1}{1}+n\binom{n-1}{2}+\cdots+n\binom{n-1}{n-2}>20000 .
$$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

