

BOARDOF STUDIES
NEWSOUTHWALES

HIGHER SCHOOL CERTIFICATE EXAMINATION

1997

MATHEMATICS

4 UNIT (ADDITIONAL)

Time allowed-Three hours
(Plus 5 minutes reading time)

Directions to Candidates

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on page 12.
- Board-approved calculators may be used.
- Answer each question in a separate Writing Booklet.
- You may ask for extra Writing Booklets if you need them.

QUESTION 1. Use a separate Writing Booklet.
(a) Evaluate $\int_{0}^{5} \frac{2}{\sqrt{x+4}} d x$.
(b) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sin \theta}{\cos ^{4} \theta} d \theta$.
(c) Find $\int \frac{1}{x^{2}+2 x+3} d x$.
(d) Find $\int \frac{4 t-6}{(t+1)\left(2 t^{2}+3\right)} d t$.
(e) Evaluate $\int_{0}^{\frac{\pi}{3}} x \sec ^{2} x d x$.

QUESTION 2. Use a separate Writing Booklet.
(a) (i) Express $\sqrt{3}-i$ in modulus-argument form.
(ii) Hence evaluate $(\sqrt{3}-i)^{6}$.
(b) (i) Simplify $(-2 i)^{3}$.
(ii) Hence find all complex numbers z such that $z^{3}=8 i$. Express your answers in the form $x+i y$.
(c) Sketch the region where the inequalities

$$
|z-3+i| \leq 5 \text { and }|z+1| \leq|z-1|
$$

both hold.
(d) Let $w=\frac{3+4 i}{5}$ and $z=\frac{5+12 i}{13}$, so that $|w|=|z|=1$.
(i) Find $w z$ and $w \bar{z}$ in the form $x+i y$.
(ii) Hence find two distinct ways of writing 65^{2} as the sum $a^{2}+b^{2}$, where a and b are integers and $0<a<b$.

QUESTION 3. Use a separate Writing Booklet.
(a)

In the diagram, the shaded region is bounded by the x axis, the line $x=3$, and the circle with centre $C(0,2)$ and radius 3 .

Find the volume of the solid formed when the region is rotated about the y axis.
(b) Let $f(x)=3 x^{5}-10 x^{3}+16 x$.
(i) Show that $f^{\prime}(x) \geq 1$ for all x.
(ii) For what values of x is $f^{\prime \prime}(x)$ positive?
(iii) Sketch the graph of $y=f(x)$, indicating any turning points and points of inflection.
(c) In a game, two players take turns at drawing, and immediately replacing, a marble from a bag containing two green and three red marbles. The game is won by player A drawing a green marble, or player B drawing a red marble. Player A draws first.

Find the probability that:
(i) A wins on her first draw;
(ii) B wins on her first draw;
(iii) A wins in less than four of her turns;
(iv) A wins eventually.

QUESTION 4. Use a separate Writing Booklet.
(a)

The point $P\left(x_{0}, y_{0}\right)$ lies on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{7}=1$. The tangent to the hyperbola at P cuts the x axis at T, and has equation

$$
\frac{x_{0} x}{9}-\frac{y_{0} y}{7}=1 .
$$

The two foci of the hyperbola are S and S^{\prime}, and the two directrices are d and d^{\prime}. The points M and M^{\prime} are the closest points to P on the directrices d and d^{\prime}.
(i) Find the coordinates of the foci.
(ii) Find the equations of the directrices.
(iii) Show that T has coordinates $\left(\frac{9}{x_{0}}, 0\right)$.
(iv) Using the focus-directrix definition, or otherwise, show that

$$
\frac{P S}{P S^{\prime}}=\frac{T S}{T S^{\prime}} .
$$

(b) (i) Find an expression for $\cot 2 A$ in terms of $\tan A$.
(ii) Show that $\tan A$ and $-\cot A$ satisfy the equation

$$
x^{2}+2 x \cot 2 A-1=0 .
$$

(iii) Hence, or otherwise, find the exact value of $\tan \frac{\pi}{8}$.
(iv) Hence find the exact value of $\tan \frac{\pi}{16}-\cot \frac{\pi}{16}$.

QUESTION 5. Use a separate Writing Booklet.
(a) (i) Sketch the graph of $y=-x^{2}$ for $-2 \leq x \leq 2$.
(ii) Hence, without using calculus, sketch the graph of $y=e^{-x^{2}}$ for $-2 \leq x \leq 2$.
(iii) The region between the curve $y=e^{-x^{2}}$, the x axis, the y axis, and the line $x=2$ is rotated around the y axis to form a solid. Using the method of cylindrical shells, find the volume of the solid.
(b)

A particle of mass m is lying on an inclined plane and does not move. The plane is at an angle θ to the horizontal. The particle is subject to a gravitational force $m g$, a normal reaction force N, and a frictional force F parallel to the plane, as shown in the diagram.

Resolve the forces acting on the particle, and hence find an expression for $\frac{F}{N}$ in terms of θ.
(c) Suppose that b and d are real numbers and $d \neq 0$. Consider the polynomial

$$
P(z)=z^{4}+b z^{2}+d
$$

The polynomial has a double root α.
(i) Prove that $P^{\prime}(z)$ is an odd function.
(ii) Prove that $-\alpha$ is also a double root of $P(z)$.
(iii) Prove that $d=\frac{b^{2}}{4}$.
(iv) For what values of b does $P(z)$ have a double root equal to $\sqrt{3} i$?
(v) For what values of b does $P(z)$ have real roots?

QUESTION 6. Use a separate Writing Booklet.
(a) The series $1-x^{2}+x^{4}-\cdots+x^{4 n}$ has $2 n+1$ terms.
(i) Explain why

$$
1-x^{2}+x^{4}-\cdots+x^{4 n}=\frac{1+x^{4 n+2}}{1+x^{2}}
$$

(ii) Hence show that

$$
\frac{1}{1+x^{2}} \leq 1-x^{2}+x^{4}-\cdots+x^{4 n} \leq \frac{1}{1+x^{2}}+x^{4 n+2}
$$

(iii) Hence show that, if $0 \leq y \leq 1$, then

$$
\tan ^{-1} y \leq y-\frac{y^{3}}{3}+\frac{y^{5}}{5}-\cdots+\frac{y^{4 n+1}}{4 n+1} \leq \tan ^{-1} y+\frac{1}{4 n+3} .
$$

(iv) Deduce that $0<\left(1-\frac{1}{3}+\frac{1}{5}-\cdots+\frac{1}{1001}\right)-\frac{\pi}{4}<10^{-3}$.
(b) A ball of mass 2 kilograms is thrown vertically upward from the origin with an initial speed of 8 metres per second. The ball is subject to a downward gravitational force of 20 newtons and air resistance of $\left(v^{2} / 5\right)$ newtons in the opposite direction to the velocity, v metres per second. Hence, until the ball reaches its highest point, the equation of motion is

$$
\ddot{y}=-\frac{v^{2}}{10}-10,
$$

where y metres is its height.
(i) Using the fact that $\ddot{y}=v \frac{d v}{d y}$, show that, while the ball is rising,

$$
v^{2}=164 e^{-y / 5}-100
$$

(ii) Hence find the maximum height reached.
(iii) Using the fact that $\ddot{y}=\frac{d v}{d t}$, find how long the ball takes to reach this maximum height.
(iv) How fast is the ball travelling when it returns to the origin?

QUESTION 7. Use a separate Writing Booklet.
(a)

The circle $(x-r)^{2}+y^{2}=r^{2}$, with centre $Q(r, 0)$ and radius r, lies inside the circle $x^{2}+y^{2}=1$, with centre O and radius 1 . The point $P(r+r \cos \theta, r \sin \theta)$ lies on the inner circle, and P and O do not coincide. The tangent to the inner circle at P meets the outer circle at R and S, and the tangents to the outer circle at R and S meet at T. The lines $O T$ and $R S$ meet at U, and are perpendicular.
(i) Show that $O T$ is parallel to $Q P$.
(ii) Show that the equation of $R S$ is $x \cos \theta+y \sin \theta=r(1+\cos \theta)$.
(iii) Find the length of $O U$.
(iv) By using the result of part (a), show that T lies on the curve $r^{2} y^{2}+2 r x=1$.

QUESTION 7. (Continued)

Marks

(c)

The parabola $x^{2}=4 a y$ touches the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ at J, and cuts it at K and L. The midpoint of $K L$ is M, and the line $J M$ cuts the y axis at N, as shown on the diagram.
(i) Find a quartic equation whose roots are the x coordinates of J, K, and L.
(ii) Show that $J N=N M$.
(iii) Hence show that the area of $\triangle J K N$ is one-quarter of the area of $\triangle J K L$.

QUESTION 8. Use a separate Writing Booklet.
(a)

10

Triangle $A B C$ is scalene. External equilateral triangles $A B F, B C D$, and $C A E$ are constructed on the sides of triangle $A B C$ as shown.

Lines $A D$ and $B E$ meet at X.

Copy or trace this diagram into your Writing Booklet.
(i) Show that $\angle B C E=\angle D C A$.
(ii) Show that $\triangle B C E \equiv \triangle D C A$.
(iii) Show that $B D C X$ is a cyclic quadrilateral.
(iv) Show that $\angle B X D=\angle D X C=\angle C X E=\angle E X A=\frac{\pi}{3}$.
(v) Show that $C F$ passes through X.
(vi) Show that $A D=B E=C F$.

QUESTION 8. (Continued)
(b)

The diagram shows points O, R, S, T, and U in the complex plane. These points correspond to the complex numbers $0, r, s, t$, and u respectively. The triangles $O R S$ and $O T U$ are equilateral. Let $\omega=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$.
(i) Explain why $u=\omega t$.
(ii) Find the complex number r in terms of s.
(iii) Using complex numbers, show that the lengths of $R T$ and $S U$ are equal.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

