

2011 HSC Chemistry Marking Guidelines

Section I, Part A

Multiple-choice Answer Key

Question	Answer
1	А
2	D
3	С
4	D
5	В
6	А
7	В
8	С
9	А
10	С
11	D
12	D
13	С
14	С
15	А
16	В
17	D
18	A
19	В
20	В

Section I, Part B

Question 21

	Criteria	Marks
•	Demonstrates a thorough knowledge and understanding of the molecular structure and use of ethanol as a solvent	
•	Provides an appropriate diagram, eg ethanol hydrogen bonding to water	4
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates a sound knowledge and understanding of the structure and use of ethanol as a solvent	
•	Provides correct structure for ethanol	3
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic knowledge of the structure and use of ethanol as a solvent	2
•	Demonstrates a limited knowledge of the structure and use of ethanol as a solvent	1
0	OR	
•	Provides correct structure for ethanol	

Question 22 (a)

	Criteria	Marks
•	Shows full depletion of ozone with correct equations	2
•	Gives ONE correct equation	1

Question 22 (b)

	Criteria	Marks
•	Sketches in general terms a method used for monitoring ozone	2
•	States a method used	1

Question 23 (a)

	Criteria	Marks
•	Gives ONE correct reason why an isotope such as copernicium-278 is unstable	1

2011 HSC Chemistry Marking Guidelines

Question 23 (b)

	Criteria	Marks
•	Provides features of a method by which transuranic elements can be synthesised	2
•	Identifies a correct method by which transuranic elements can be synthesised	1

Question 24 (a)

Criteria	Marks
• Calculates correct E^{Θ}	2
Provides correctly balanced net ionic equation	
• Calculates correct E^{Θ}	
OR	1
Provides correctly balanced net ionic equation	

Question 24 (b) (i)

	Criteria	Marks
•	Correctly calculates final mass of Ni electrode	3
•	Correctly calculates moles of Cu deposited	2
•	Calculates mass of Ni lost	2
•	Correctly calculates moles of Cu deposited	1

Question 24 (b) (ii)

	Criteria	Marks
•	Correctly calculates final concentration of Ni solution using moles of Ni lost from b (i)	2
•	Includes one correct relevant mole calculation	1

Question 25

	Criteria	Marks
•	States the role of $H_2PO_4^{-}/HPO_4^{2-}$ as a buffer system in the cell	2
•	Provides TWO correct equations	5
•	States the role of $H_2PO_4^{-}/HPO_4^{2-}$ as a buffer system in the cell AND provides ONE correct equation	2
0	R	Z
•	Provides TWO correct equations	
•	States the role of $H_2PO_4^{-}/HPO_4^{2-}$ as a buffer system in the cell	
0	OR	
•	Provides ONE correct equation	

Question 26 (a)

	Criteria	Marks
•	Provides a valid reason	
•	Correctly calculates both NaOH concentrations	2
0	R	2
•	Indicates actual value is less than theoretical value	
•	Provides a valid reason	
0	R	1
•	Correctly calculates TWO NaOH concentrations	

Question 26 (b)

	Criteria	Marks
•	Correctly calculates concentration of original solution of citric acid	4
•	Calculates concentration of original solution of citric acid using incorrect NaOH concentration or incorrect mole ratio or incorrect volume of HCl R	3
•	Correctly calculates concentration of diluted solution of citric acid	
•	Calculates concentration of citric acid solution with TWO errors	2
•	Provides ONE correct step in the calculation	1

Question 27

	Criteria	Marks
•	Demonstrates a thorough knowledge and understanding of the uses of BOTH polymers in terms of their properties	
•	Refers to polystyrene AND a named biopolymer	F
•	Makes a judgement of the extract based on criteria	3
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates a sound knowledge and understanding of the uses of BOTH polymers in terms of their properties	
•	Refers to polystyrene AND a named biopolymer	4
•	Makes a judgement of the extract based on criteria	
•	Communicates scientific principles and ideas in a clear manner	
•	Demonstrates basic knowledge and understanding of the use of BOTH polymers in terms of their properties	2
•	Refers to polystyrene AND a named biopolymer	3
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates limited knowledge and understanding of the use of polymers in terms of their properties	2
•	Refers to polystyrene only or a named biopolymer	2
•	Communicates ideas in a basic form using general scientific terms	
•	Demonstrates some knowledge and understanding of the uses of polymers or their properties	1
•	Communicates simple ideas	

Question 28

	Criteria	Marks
•	Demonstrates a thorough knowledge and understanding of TWO tests	
•	Provides the main features of the chemical or physical principle of EACH test	4
•	Provides the main features of the procedure used for EACH test	
•	Demonstrates a sound knowledge and understanding of TWO tests	
•	Outlines the chemical or physical principle of EACH test AND the procedure used for ONE test	3
0	R	5
•	Outlines the procedure used for EACH test AND the chemical or physical principle of ONE test	
•	Demonstrates a basic knowledge and understanding of at least ONE test	
•	Outlines the principle of EACH test	
0	R	2
•	Outlines the procedure used for EACH test	2
0	R	
•	Outlines the principle AND procedure used for ONE test only	
•	Demonstrates a limited knowledge and understanding of ONE test	
•	Outlines the principle of ONE test	1
0	R	1
•	Outlines the procedure of ONE test	

Question 29 (a)

	Criteria	Marks
•	Demonstrates thorough knowledge and understanding of the Arrhenius AND Brönsted–Lowry definitions of acids and bases	3
•	Supports the statement with evidence	
•	Demonstrates a sound knowledge and understanding of the Arrhenius AND Brönsted–Lowry definitions	
0	R	
•	Demonstrates a sound knowledge and understanding of EITHER the Brönsted–Lowry OR the Arrhenius definition	
•	Supports the statement with evidence	2
0	R	
•	Demonstrates a basic knowledge and understanding of the Arrhenius AND Brönsted–Lowry definitions	
•	Supports the statement with evidence	
•	Demonstrates a sound knowledge and understanding of EITHER the Arrhenius OR the Brönsted–Lowry definition R	1
•	Provides a justification	

Question 29 (b)

	Criteria	Marks
•	Provides a reason why the heat of reaction is approximately -57 kJ mol^{-1} for neutralisation reactions of strong acids and strong bases	1

Question 30

	Criteria	Marks
•	Demonstrates a thorough knowledge and understanding of equilibrium and Le Chateliers principle with reference to the THREE reactions	
•	Relates the conditions required to the increased yield and production rate	6
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates a sound knowledge and understanding of equilibrium and Le Chateliers principle with reference to the THREE reactions	4–5
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic knowledge and understanding of equilibrium and Le Chateliers principle with reference to flow chart	2–3
•	Communicates ideas in a basic form using general scientific language	
•	Demonstrates a limited knowledge and understanding of equilibrium and Le Chateliers principle	1
•	Communicates simple ideas	

Question 31

	Criteria	Marks
•	Demonstrates a thorough knowledge and understanding of potential sources of contamination of waterways	
•	Provides evidence of a thorough analysis of the data	1
•	Provides reasons for TWO possible sources of contamination	4
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates a sound knowledge and understanding of potential sources of contamination of waterways	
•	Refers to data	3
•	Provides reasons for TWO possible sources of contamination	
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic knowledge and understanding of potential sources of contamination of waterways	
•	Refers to data	2
•	Provides reasons for ONE possible source of contamination OR states TWO possible sources of contamination	2
•	Communicates ideas in a basic form using general scientific terms	
•	Demonstrates a limited knowledge of the potential sources of contamination of waterways	
•	Communicates simple ideas	1
•	States at least ONE source of contamination	

Question 32 (a)

Criteria	Marks
Provides correct reason	1

Question 32 (b)

Criteria	Marks
• Determines correct soil pH resulting in identification of suitable plant	2
Identifies correct plant	
OR	1
Determines correct soil pH	

Question 32 (c)

Criteria	Marks
• Sketches in general terms a method using several solutions of known pH	2
Sketches in general terms a method	
OR	1
Provides some solutions to be tested	

Section II

Question 33 (a)

	Criteria	Marks
•	Relates cause and effect of the colour change	2
•	Provides a relevant chemical equation	3
•	Outlines relevant features of the chemical process involved	2
•	Provides a relevant feature of the process involved	1

Question 33 (b) (i)

	Criteria	Marks
•	Provides chemical equations showing production and usage of $CO_2(g)$ in	
	the Solvay process	3
•	States a reason to support statement	
•	Provides a chemical equation demonstrating either production or usage of $CO_2(g)$ in the Solvay process	2
•	States a reason to support statement	
•	Provides a chemical equation demonstrating production or usage of $CO_2(g)$ in the Solvay process	1
0	OR	
•	States a reason to support statement	

Question 33 (b) (ii)

	Criteria	Marks
•	Calculates correct mass of CaCl ₂	2
•	Uses correct molar ratio	
•	Uses correct moles NaCl	1
0	DR	I
•	Uses correct method with incorrect molar ratio	

Question 33 (c) (i)

	Criteria	Marks
•	Provides reasons for ALL observations	2
•	Provides BOTH fully balanced chemical half equations	3
•	Provides reasons for SOME observations	
•	Provides BOTH fully balanced chemical half equations	
0	R	2
•	Provides reasons for ALL observations	
•	Provides ONE fully balanced chemical half equation	
•	Provides reasons for SOME observations	
0	R	1
•	Provides ONE fully balanced chemical equation	

Question 33 (c) (ii)

	Criteria	Marks
•	Provides reasons for TWO specific energy conversions and their requirements	2
•	Provides a general statement regarding energy requirements	1

Question 33 (d) (i)

	Criteria	Marks
•	Indicates the main features of a physical model that demonstrates equilibrium	2
•	States a feature of or sketch of a physical procedure that models equilibrium	1

Question 33 (d) (ii)

	Criteria	Marks
•	Gives a value judgement based upon the information collected providing factors that promote validity	3
•	Indicates the limitations of the model that compromise validity	
•	Discusses factors that promote validity of the information collected	n
•	Gives a value judgement	2
•	Identifies a limitation that relates to the model that compromises its validity	
OR		1
•	Provides a factor that relates to the model that promotes validity	

Question 33 (e)

	Criteria	Marks
•	Demonstrates thorough knowledge and understanding of the environmental issues of THREE industrial processes studied	
•	Provides a judgement about these issues in terms of the overall impact on society	6–7
•	Uses correct and relevant chemistry	
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates sound knowledge and understanding of the environmental issues of THREE industrial processes studied	
•	Outlines the overall impact that these issues have had on society	4–5
•	Uses some correct and relevant chemistry	
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic understanding of the environmental issues of the industrial processes studied	0.0
•	Identifies some impacts these issues have had on society	2–3
•	Communicates ideas in a basic form using general scientific terms	
•	Demonstrates a limited knowledge and understanding of the environmental issues of the industrial processes studied	1
•	Communicates simple ideas	

Question 34 (a)

	Criteria	Marks
•	Identifies a suitable material for X	
•	States that the sacrificial anode, X, is preferentially oxidised	3
•	Relates this to the relevant reduction potentials for X and iron or relative activity	5
•	Identifies that corrosion is prevented by preferential oxidation of the named sacrificial anode	
0	R	2
•	States relevant reduction potentials for an appropriate X, and iron or relative activity	
•	States that X acts as a sacrificial anode	
0	R	
•	Identifies a suitable material for X	1
0	R	
•	States that X is oxidised	

Question 34 (b) (i)

	Criteria	Marks
•	Provides an overall balanced equation for the relevant cell	1
•	Clearly identifies the structure of this galvanic cell including electrolyte	4
•	Provides correct half equations for this cell	
•	States that aluminium is the more reactive metal	3
•	States that a galvanic cell is formed	
•	TWO of the following:	
	– States that aluminium is more reactive than silver	2
	 States that aluminium is oxidised 	2
	 States that a galvanic cell is formed 	
•	States that aluminium is more reactive than silver	
0	R	
•	States that aluminium is oxidised	1
0	R	
•	States that a galvanic cell is formed	

Question 34 (b) (ii)

	Criteria	Marks
•	States that the electrochemical method is restorative, and hence preferable	1

Question 34 (c) (i)

	Criteria	Marks
•	Provides a detailed diagram of the cell	3
•	Provides a basic diagram of the cell	2
•	Provides a limited diagram of the cell	1

Question 34 (c) (ii)

	Criteria	Marks
•	Provides balanced equations at correct electrodes	2
•	Provides ONE balanced equation at correct electrode	
0	DR	1
•	Provides TWO balanced equations but incorrect electrodes	

Question 34 (d) (i)

	Criteria	Marks
•	Provides features of an appropriate method	n
•	Provides a reason for the treatment	Z
•	Provides features of an appropriate method	
OR		1
•	Provides a reason for the treatment	

Question 34 (d) (ii)

	Criteria	Marks
•	Provides a value judgement on the validity of the data collected with examples of limitations and positive attributes of the experimental design	3
•	Discusses the limitations and positive attributes of experimental design	
0	R	2
•	Discusses limitations or attributes of experimental design and gives a judgement	2
•	Gives value judgement in terms of validity of the data collected	
OR		
•	Identifies a limitation of the investigation's design	
0	R	
•	Identifies an attribute	1
0	R	
•	Identifies a controlled variable	
0	R	
•	Relates validity to control of variables	

Question 34 (e)

	Criteria	Marks
•	Demonstrates thorough knowledge and understanding of the significance of the conditions prevailing at great depths in terms of corrosion of shipwrecks	
•	Makes value judgement based on criteria (or evidence)	67
•	Uses correct and relevant chemistry with correct equations	0-7
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates sound knowledge and understanding of the significance of the conditions prevailing at great depths in terms of corrosion of shipwrecks	4.5
•	Writes a relevant and correct equation	4–5
•	Communicates some scientific principles and ideas clearly	
•	Demonstrates a basic knowledge of the significance of the conditions prevailing at great depths and their effect on corrosion of shipwrecks	2–3
•	Communicates ideas in a basic form using general scientific terms	
•	Demonstrates a limited knowledge of conditions at great depths and their effect on corrosion of a shipwreck	1
•	Communicates simple ideas	

Question 35 (a)

	Criteria	Marks
•	Correctly identifies process X	
•	Shows the difference in oxygen requirements by identifying glycolysis as anaerobic and the chemical processes in the mitochondria as aerobic	3
•	Correctly identifies process X	
•	Identifies glycolysis as anaerobic	
0	R	
•	Correctly identifies process X	2
•	Identifies the chemical processes in the mitochondria as aerobic	2
0	R	
•	Shows the difference in oxygen requirements by identifying glycolysis as anaerobic and the chemical processes in the mitochondria	
•	Correctly identifies process X	
0	R	
•	Identifies glycolysis as anaerobic	1
0	R	
•	Identifies the chemical processes in the mitochondria as aerobic	

Question 35 (b) (i)

	Criteria	Marks
•	Provides correctly balanced equation	2
•	Provides the general formula of an amino acid	1

Question 35 (b) (ii)

	Criteria	Marks
•	Clearly explains how changes in pH and increases in temperature will affect the molecular structure of a protein	3
•	Refers to secondary and tertiary structure	
•	States how changes in pH will affect the molecular structure of a protein	
•	States how increases in temperature will affect the molecular structure of a protein	2
•	States how changes in pH will affect the molecular structure of a protein	
0	R	1
•	States how increases in temperature will affect the molecular structure of a protein	1

Question 35 (c) (i)

	Criteria	Marks
•	Demonstrates a thorough knowledge and understanding of Types 1 and 2 muscle cells	
•	Provides reasons for the different usage of muscle cell types	3
•	Refers to EACH activity	5
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates a sound knowledge and understanding of Types 1 and 2 muscle cells	
•	Refers to at least TWO activities	2
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic knowledge and understanding of Types 1 and 2 muscle cells	1
•	Refers to at least ONE activity	I
•	Communicates ideas in a basic form using general scientific terms	

Question 35 (c) (ii)

	Criteria	Marks
•	Demonstrates a thorough knowledge of the chemistry involved by using a relevant chemical equation showing the production of ATP including consideration of energy	2
•	Demonstrates a knowledge of some of the chemistry involved by using a relevant chemical equation showing the production of ATP without the addition of energy	
0	OR	
•	Demonstrates a knowledge of some of the chemistry involved by using a chemical equation to show the formation of ADP	
	(Energy ATP \rightarrow ADP + Pi)	

Question 35 (d) (i)

	Criteria	Marks
•	Provides reasons for the fact that there is an optimal temperature for enzyme function	2
•	Provides only a simple reason for an optimal temperature	
0	R	1
•	Gives a basic description of the effect of temperature on enzyme function	

Question 35 (d) (ii)

	Criteria	Marks
•	Gives a value judgement on the validity of the data collected with examples of limitations and positive attributes of the experimental design	3
•	Discusses the interpretation of the independent variable in this investigation	
0	R	
•	Discusses the control of variables in this investigation	2
0	R	
•	Analyses the way results are collected in this investigation	
•	Gives a value judgement in terms of the validity of the investigation	
0	R	
•	Indentifies a limitation of the investigation's validity	
0	R	1
•	Relates validity to control of variables	
0	R	
•	Identifies a controlled variable	

Question 35 (e)

	Criteria	Marks
•	Demonstrates a thorough knowledge and understanding of the energy availability of fats and carbohydrates	
•	Explains how this knowledge has improved society's understanding of nutrition	7
•	Refers to metabolic pathways	
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates a sound knowledge and understanding of the energy availability of fats and carbohydrates	
•	Describes how this knowledge has improved society's understanding of nutrition	5–6
•	Refers to at least ONE metabolic pathway	
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic knowledge and understanding of the energy availability of fats and carbohydrates	
0	R	
•	Describes how this knowledge has improved society's understanding of nutrition	3–4
•	Refers to at least ONE metabolic pathway	
•	Communicates ideas in a basic form using general scientific terms	
•	Demonstrates a limited knowledge and understanding of the energy availability of fats and carbohydrates	1–2
•	Communicates simple ideas	

Question 36 (a)

	Criteria	Marks
•	Provides detailed reasons for the difference in colour	3
•	Provides reasons for the difference in colour	2
•	Provides a reason for the difference in colour	1

Question 36 (b) (i)

	Criteria	Marks
•	Provides one correct cation and one correct anion	2
•	Provides one correct cation or anion	1

Question 36 (b) (ii)

	Criteria	Marks
•	Identifies THREE key points of electron configuration, orbital energy and multiple electron loss in transition elements	2
•	Clearly shows the relationship between the properties of Groups I and II metals and the transition metals	J
•	Identifies TWO key points of electron configuration, orbital energy and multiple electron loss in transition elements	2
•	Identifies ONE of the key points of electron configuration, orbital energy and multiple election loss in transition elements	1

Question 36 (c) (i)

	Criteria	Marks
•	Provides features of the method to obtain values in the table	2
•	Includes one of: sample emission or measurement of emitted radiation	1

Question 36 (c) (ii)

	Criteria	Marks
•	Provides a diagram showing FOUR transition arrows, all with the same final energy level, with arrow heads showing downward direction and labelled with correct wavelengths with appropriate spacing	3
•	Provides a diagram showing THREE correct features such as arrow directions, common final energy level, correct labelling for at least TWO transitions	2
•	Provides a diagram showing TWO correct features such as arrow directions, common final energy level, correct labelling for at least ONE transition	1

Question 36 (d) (i)

	Criteria	Marks
•	Provides features of the experiment	2
•	Provides a limited feature of the experiment	1

Question 36 (d) (ii)

	Criteria	Marks
•	Gives a value judgement on the validity of the data collected with examples of limitations and positive attributes of the experimental design	3
•	Discusses limitations and positive attributes of experimental design	
0	R	2
•	Discusses limitations or attributes of experimental design and gives a judgement of the validity of the data	2
•	Gives a value judgement in terms of the validity of the investigation	
0	OR	
•	Identifies a limitation or a positive attribute of the investigation's validity	1
0	OR	
•	Identifies a controlled variable	

Question 36 (e)

	Criteria	Marks
•	Demonstrates a thorough knowledge and understanding of the techniques and the composition of pigments, AND relates this to spectroscopic techniques	7
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates a sound knowledge and understanding of the techniques and the composition of pigments AND relates this to spectroscopic techniques	5–6
•	Communicates some scientific principles and ideas clearly	
•	Demonstrates a basic knowledge and understanding of the techniques OR the composition of pigments	3–4
•	Communicates ideas in a basic form using general scientific terms	
•	Demonstrates a limited knowledge of the technique OR pigments	1 2
•	Communicates simple ideas	1-2

Question 37 (a)

	Criteria	Marks
•	Correctly names the structure	
•	Identifies the free carbonyl group	3
•	States that it can be oxidised/reducing sugar	
•	Correctly names the structure	
•	Identifies the free carbonyl group	2
0	R	
•	States that it can be oxidised/reducing sugar	
•	Names the structure as a sugar	
0	R	1
•	Identifies the free carbonyl group	

Question 37 (b) (i)

	Criteria	Marks
•	Provides correctly balanced equation	2
•	Provides formula for amino acid	1

Question 37 (b) (ii)

	Criteria	Marks
•	Shows clearly how the principles of paper chromatography can separate to amino acids	3
•	Describes the principles of paper chromatography with reference to amino acids	2
•	Demonstrates a basic knowledge of the principles of paper chromatography	1

Question 37 (c) (i)

	Criteria	Marks
•	Demonstrates a thorough knowledge of the principle of the analysis of DNA	1
•	States how it is used in the identification of relationships	4
•	Demonstrates a sound knowledge of the principle of the analysis of DNA	2
•	States how it is used in the identification of relationships	5
•	Demonstrates a basic knowledge of the principle of the analysis of DNA and how it can be used to identify relationships	2
•	Demonstrates a limited knowledge of the principle of the analysis of DNA	
0	R	1
•	States how it can be used to identify relationships	

Question 37 (c) (ii)

	Criteria	Marks
•	Correctly identifies the DNA of the child	1

Question 37 (d) (i)

	Criteria	Marks
•	Demonstrates a thorough knowledge of the principles of identification of all FOUR unknown compounds	4
•	Relates the tests to the properties of the compounds	4
•	Demonstrates coherence and logical progression of ideas	
•	Demonstrates a sound knowledge of the principles of identification of THREE unknown compounds	3
•	Communicates ideas in a clear manner	
•	Demonstrates a basic knowledge of the principles of identification of the unknown compounds	2
•	Communicates ideas in a basic form	
•	Demonstrates a limited knowledge of the principles of identification of the unknown compounds	1
•	Communicates simple ideas	

Question 37 (d) (ii)

Criteria	Marks
Correctly identifies both tests	1

Question 37 (e)

	Criteria	Marks
•	Demonstrates a thorough knowledge and understanding of THREE instrumental techniques and their optimal use in forensic analysis	
•	Makes a value judgement for each instrument	6–7
•	Demonstrates coherence and logical progression and includes correct use of scientific principles and ideas	
•	Demonstrates a sound knowledge and understanding of THREE instrumental techniques and their optimal use in forensic analysis	4–5
•	Communicates some scientific principles and ideas in a clear manner	
•	Demonstrates a basic knowledge and understanding of the instrumental techniques and their use in forensic analysis	2–3
•	Communicates in a basic form using general scientific terms	
•	Demonstrates a limited knowledge and understanding of the instrumental techniques and their use	1
•	Communicates simple ideas	

Chemistry

2011 HSC Examination Mapping Grid

Section]
Part A	

Question	Marks	Content	Syllabus outcomes
1	1	9.2.3.2.2, 9.2.3.3.1	Н9
2	1	9.2.3.2.5/6, 9.2.3.3.4/5	Н9
3	1	9.3.1.2.1, 9.3.1.3.3	H8
4	1	9.4.4.2.8, 9.4.4.3.1	H8, H9
5	1	9.4.5.2.3, 9.4.5.3.3	H8
6	1	9.2.3.2.9, 9.3.5.2.3	Н9
7	1	9.2.5.2.1	H6
8	1	9.3.5.2.2	H9
9	1	9.4.4.2.6	H6
10	1	9.4.3.2.1, 9.4.3.3.1	H8, H14
11	1	9.2.1.2.3, 9.2.1.3.2, 9.4.4.2.9	H9, H10
12	1	9.2.4.2.2, 9.2.4.3.4	H7, H8, H14
13	1	9.3.2.2.4, 9.3.2.2.5	H8, H14
14	1	9.4.4.2.9	H13
15	1	9.3.3.2.4, 9.3.3.3.4, 9.3.4.3.3	H8, H10, H14
16	1	9.3.3.2.3, 9.3.4.2.4, 9.3.4.3.2	H8, H14
17	1	9.2.3.2.7/9	H9, H12, H13
18	1	9.3.4.3.3	H8, H10, H12
19	1	9.3.2.2.9, 9.3.2.3.1	H12
20	1	9.4.1.2.3	H9, H10, H12

Section I Part B

Question	Marks	Content	Syllabus outcomes
21	4	9.2.3.2.3, 9.2.3.2.9	H9, H13, H14
22 (a)	2	9.4.4.3.1	Н6, Н9, Н13
22 (b)	2	9.4.4.2.11	H6, H11
23 (a)	1	9.2.5.2.1, 9.2.5.2.2	H6, H14
23 (b)	2	9.2.5.2.2	H6, H12
24 (a)	2	9.2.4.3.4, 9.2.4.2.4	H7, H12, H13
24 (b) (i)	3	9.2.4.2.1, 9.2.4.2.4	H10, H12, H14
24 (b) (ii)	2	9.2.4.2.1, 9.2.4.2.4	H10, H12, H14
25	3	9.3.4.2.3/5/6/9	H8, H10, H13
26 (a)	2	9.3.4.3.3, 9.3.4.2.8	H7, H10, H12, H14
26 (b)	4	9.3.4.3.3, 9.3.4.2.8	H10, H12, H14
27	5	9.2.2.3.1, 9.2.1.2.8	H1, H4, H9, H12, H14
28	4	9.4.5.2.1, 9.4.5.3.1/2, 9.4.3.3.1	H8, H11, H14

29 (a)	3	9.3.4.2.1, 9.3.4.2.2	H2, H8, H14
29 (b)	1	9.3.4.2.7	H7, H14
30	6	9.3.2.2.4, 9.4.2.2.5/6/7/8	H7, H8, H10, H14
31	4	9.4.5.2.1/2, 9.4.5.3.3	H14
32 (a)	1	9.3.1.2.3, 9.4.3.3.3, 9.4.3.3.1	H6, H14
32 (b)	2	9.3.1.2.2/3	H4, H14
32 (c)	2	9.3.1.2.2, 9.3.1.3.1	H8, H14

Section II Question 33 — Industrial Chemistry

Question	Marks	Content	Syllabus outcomes
(a)	3	9.5.3.2.6	H7, H8, H13
(b) (i)	3	9.5.6.2.3, 9.5.6.2.4	H4, H8, H13, H14
(b) (ii)	2	9.5.6.2.3, 9.5.6.3.2	H8, H10, H14
(c) (i)	3	9.5.4.3.2	H7, H12, H13, H14
(c) (ii)	2	9.5.4.2.1	H7, H14
(d) (i)	2	9.5.2.3.1	H2, H11
(d) (ii)	3	9.5.2.3.1	H2, H11, H14
(e)	7	9.5.3.2.2, 9.5.4.2.3, 9.5.5.3.5, 9.5.6.2.4	H4, H8, H13, H14

Section II

Question 34 — Shipwrecks, Corrosion and Conservation

Question	Marks	Content	Syllabus outcomes
(a)	3	9.6.4.2.2, 9.6.4.3.4	H3, H6, H14
(b) (i)	4	9.6.4.2.2, 9.6.4.2.4, 9.6.7.2.5	H7, H8, H13, H14
(b) (ii)	1	9.6.7.2.5	H4, H8, H14
(c) (i)	3	9.6.3.2.2	H7, H12, H13, H14
(c) (ii)	2	9.6.3.2.1	H7, H12, H13, H14
(d) (i)	2	9.6.4.3.2	H8, H11
(d) (ii)	3	9.6.4.3.2	H8, H11, H14
(e)	7	9.6.5.2.1, 9.6.5.2.2, 9.6.5.2.4, 9.6.5.3.2, 9.6.6.1, 9.6.6.2, 9.6.6.2.3	H1, H2, H8, H13, H14

Section II

Question	Marks	Content	Syllabus outcomes
(a)	3	9.7.1.2.5, 9.7.8.2.1/5	H7, H9, H12, H14
(b) (i)	2	9.7.4.2.1, 9.7.4.2.2, 9.7.4.3.2.3, 9.7.4.3.1	H8, H9, H10, H13
(b) (ii)	3	9.7.4.2.6, 9.7.4.3.2, 9.7.4.2.5	H8, H14
(c) (i)	3	9.7.8.1, 9.7.8.2.5, 9.7.8.3.1, 9.7.10.2.1	H7, H8, H12, H14
(c) (ii)	2	9.7.9.2.3	H8, H7, H9, H13
(d) (i)	2	9.7.4.3.2	H8, H9, H11
(d) (ii)	3	9.7.4.3.2	H11, H14
(e)	7	9.7.2.1, 9.7.3.1, 9.7.6.1	H1, H4, H7, H8, H9, H14

Question	Marks	Content	Syllabus outcomes
(a)	3	9.8.4.2.3, 9.8.4.2.4	H6, H12, H13, H14
(b) (i)	2	9.8.3.2.1, 9.8.3.2.4	H6, H13, H14
(b) (ii)	3	9.8.3.2.4, 9.8.3.2.6, 9.8.4.2.3	H2, H6, H12
(c) (i)	2	9.8.2.2.4, 9.8.2.3.2	H2, H3, H6, H7, H11
(c) (ii)	3	9.8.2.2.5, 9.8.2.3.2	H2, H6, H7, H13
(d) (i)	2	9.8.2.2.1, 9.8.2.3.1	H6, H7, H11
(d) (ii)	3	9.8.2.2.1, 9.8.2.3.1	H11, H14
(e)	7	9.8.2.1, 9.8.2.2.4, 9.8.2.2.9	H3, H6, H7, H11, H14

Section II Question 36 — The Chemistry of Art

Section II

Question 37 — Forensic Chemistry

Question	Marks	Content	Syllabus outcomes
(a)	3	9.9.2.2.2, 9.9.2.2.3	H6, H9, H13
(b) (i)	2	9.9.3.2.3, 9.9.3.2.4	H9, H10, H13
(b) (ii)	3	9.9.3.2.5, 9.9.3.3.2, 9.9.3.3.3, 9.9.3.3.4	H8, H9, H14
(c) (i)	4	9.9.4.2.3	H8, H9, H11, H14
(c) (ii)	1	9.9.4.2.2	H1, H12, H14
(d) (i)	4	9.9.1.2.1, 9.9.1.3.4, 9.9.1.3.3, 9.9.2.3.1, 9.9.3.3.2	H8, H9, H11, H14
(d) (ii)	1	9.9.5.2.1	H8, H9, H11
(e)	7	9.9.3.2.6, 9.9.3.3.5, 9.9.5.2.2, 9.9.5.2.3, 9.9.6.3.1	H3, H4, H11, H14