

2011 HSC Engineering Studies Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	В
3	С
4	D
5	С
6	А
7	А
8	В
9	С
10	С

Section II

Question 11 (a) (i)

Criteria	Marks
Recognises and names TWO innovations between the two bikes	
OR	1
• Recognises and names ONE material innovation between the two bikes and outlines how or why it is used	1

Question 11 (a) (ii)

	Criteria	Marks
•	Recognises and names TWO changes in characteristics/features of the mechanical system between the 2 bikes	
0 •	R Recognises and names ONE change in characteristics/features of the	2
	mechanical system between the 2 bikes and justifies how it has led to improved efficiency	
•	Recognises and names ONE change in characteristic/feature of the mechanical system between the two bikes	1

Question 11 (a) (iii)

	Criteria	Marks
•	Correctly identifies an appropriate engineering field and outlines developments that have contributed to bicycle manufacture	2
•	Correctly identifies an appropriate engineering field but without an outline OR lists some developments	1

Question 11 (b)

	Criteria	Marks
•	Identifies and provides points for or against the use of bicycles to address TWO environmental issues	3
•	Identifies and provides points for or against the use of bicycles to address ONE environmental issue that relates to the use of bicycles as a transport system OR covers TWO or more environmental issues briefly	2
•	Lists points for or against the use of bicycles and the environment	1

Question 11 (c)

	Criteria	Marks
•	Indicates the main features of an appropriate project and identifies an ethical issue from within that project, providing points for OR against this issue	2
•	Names an ethical issue from within a project without giving for OR against points in regard to this issue	1

Question 12 (a) (i)

	Criteria	Marks
•	States an advantage or advantages	1

Question 12 (a) (ii)

	Criteria	Marks
•	Names and describes the compression testing process correctly	2
•	Only names the correct process OR describes an incorrect process	1

Question 12 (b)

	Criteria	Marks
•	Provides detail on the process of glass toughening and relates the properties to building application	2
•	Provides a limited discussion OR identifies appropriate application	1

Question 12 (c) (i)

	Criteria	Marks
•	Demonstrates correct use of moments with consistent sign convention	2
•	Resolves components to determine the magnitude and direction of A	3
•	Demonstrates moments principles with some minor errors/or some wrong sign convention	2
•	Determines answer in vertical and horizontal components only	
•	Demonstrates limited understanding and application of moments with errors	1

Question 12 (c) (ii)

	Criteria	Marks
•	Demonstrates correct use of method (method of sections or methods of joints) to calculate correct answer	2
•	Determines correct nature of the force	
•	Determines correct magnitude with incorrect nature of force	
•	Determines correct nature of force with incorrect or no magnitude of force found	1

Question 13 (a) (i)

	Criteria	Marks
•	Demonstrates correct use of moments with correct signs and perpendicular distances to calculate answer	2
•	Demonstrates use of moments with some minor errors (signs or distances)	1

Question 13 (a) (ii)

	Criteria	Marks
•	Demonstrates an understanding of VR and calculates velocity ratio using all drive mechanism	2
•	Demonstrates an understanding of VR and calculates velocity ratio using part of drive mechanism	1

Question 13 (b)

	Criteria	Marks
•	Correctly identifies a process and a description of the manufacture	2
•	Correctly identifies a process with an incorrect explanation OR	1
•	Identifies an incorrect process followed by a correct explanation of that process	1

Question 13 (c)

	Criteria	Marks
•	 Names a correct type of motor and provides justification 	2
•	Names type of motor with no justification	1

Question 13 (d)

	Criteria	Marks
•	Explains the process of vulcanisation and describes how this enhances mechanical properties	2
•	Explains the process of vulcanisation OR	1
•	Mentions some changes in properties without reference to cross-linking	

Question 14 (a)

	Criteria	Marks
•	All inputs connected correctly and brake applied has a value of 1	2
•	Determines that reverse gear selected is the input to the NOT gate, other inputs incorrectly connected	1
•	Determines that sensor 1 and sensor 2 are inputs to the OR gate, with other inputs incorrectly connected	1

Question 14 (b)

	Criteria	Marks
•	Calculates the correct load applying the correct factor of safety	2
•	Calculates correct load with no use of factor of safety, or incorrectly uses factor of safety	1
•	Demonstrates use of moments OR correct use of factor of safety	

Question 14 (c) (i)

	Criteria	Marks
•	Correctly sketches a normalised 0.4% carbon steel microstructure and labels/names both pearlite and ferrite	2
•	Sketches an appropriate diagram without labels, OR incorrect sketch with one appropriate label	1
•	Indicates fine/refined grains due to normalising	

Question 14 (c) (ii)

	Criteria	Marks
•	Correct shear force AND bending moment diagrams with appropriate values	3
•	Correct shear force OR bending moment diagrams with appropriate values	2
•	Shows some understanding of shear force OR bending moments	1

Question 14 (d)

	Criteria	Marks
•	Gives a valid reason why the process is suitable	1

Question 15 (a) (i)

Criteria	Marks
 Shows laminar flow over aerofoil at 4° and turbulent flow over 25° aerofoil 	1

Question 15 (a) (ii)

	Criteria	Marks
•	Highlights the change in lift force angle and relates this to reduction in vertical lift and drop in altitude	2
•	States only that vertical lift is reduced or gives only mathematical answer	1

Question 15 (b)

	Criteria	Marks
•	Correct connection between concept of proportion expansion of diaphragm with falling pressure due to altitude	2
•	Limited understanding of concepts eg 'Instrument measures change in air pressure'	1

Question 15 (c) (i)

	Criteria	Marks
•	Correct sketch, correctly identifying two suitable components to form laminate	2
•	No sketch, but listing two components	
0	R	
•	Materials listed, but not forming a laminate OR foam laminate OR honeycomb laminate	1
•	Appropriate sketch but components not labelled	

Question 15 (c) (ii)

	Criteria	Marks
•	Correctly describes two different properties that are enhanced by laminating the two materials	2
•	Correctly describes one property that is enhanced by process of lamination	
0	0R	1
•	Names (identifies) two properties without description	

Question 15 (d)

	Criteria	Marks
•	Correctly names and describes a suitable non-destructive test	2
•	Limited understanding of a non-destructive test	
0)R	1
•	Names an appropriate non-destructive test	

Question 15 (e)

	Criteria	Marks
•	Provides a pictorial drawing in proportion AND correct shape	4
•	Provides a substantially correct pictorial drawing, mostly complete	3
•	Provides a pictorial drawing with some aspects correct	2
•	Provides a limited AND/OR incomplete pictorial sketch	1

Question 16 (a)

	Criteria	Marks
•	Provides correct comparison for TWO types of orbit	2
•	Provides a correct explanation of ONE type of orbit OR names TWO types of orbits without providing a correct explanation	1

Question 16 (b)

	Criteria	Marks
•	Outlines TWO forms of multiplexing	2
•	Names ONE form of multiplexing and provides a correct description	1
•	Demonstrates an understanding of multiplexing	1

Question 16 (c)

	Criteria	Marks
•	Suitability of Bakelite discussed, demonstrating sound understanding of reasons	2
•	A suitable advantage listed without being discussed	1

Question 16 (d) (i)

	Criteria	Marks
•	Provides a correct description of an advantage and provides an explanation	2
•	Names an advantage without providing an explanation	1

Question 16 (d) (ii)

	Criteria	Marks
•	Provides a correct sketch to represent the output of the FSK modulator	2
•	Demonstrates knowledge of modulation in sketch	1

Question 16 (e)

	Criteria	Marks
•	Provides correct assembly AND proportion of components with correct standards or only minor errors	5
•	Provides partial assembly AND proportion of components with some errors	4
•	Provides partial assembly AND proportion of components with a significant error	3
•	Provides partial assembly AND proportion of components	2
•	Provides partial assembly AND proportion of components with significant errors OR unassembled but correct proportion of components with minor errors	1
•	Unassembled but correct proportion of components with significant errors	

Question 17 (a) (i)

	Criteria	Marks
•	Understanding that any statement made in an Engineering report must be based on accepted and identified standards and texts	1

Question 17 (a) (ii)

	Criteria	Marks
•	Lists TWO appropriate criteria	2
•	Lists ONE appropriate criteria	1

Question 17 (a) (iii)

	Criteria				
•	Viable test selected and relevant features of the test described				
•	Viable test selected and described with some detail	2			
•	Names a viable test without detail	1			

Question 17 (b) (i)

	Criteria				
•	• Correct formula leading to correct answer				
•	Partial solution with some sort of equation with an energy/work value divided by time	1			

Question 17 (b) (ii)

	Criteria				
•	• Correct formula leading to a correct answer				
•	Correctly determined theoretical power value OR a reasonable expression for efficiency	1			

Question 18 (a)

	Criteria				
•	Outlines advantage(s) AND disadvantage(s) of increased access	2			
•	Outlines only advantage(s) OR disadvantage(s)	1			
•	Only states/lists advantage(s) and disadvantage(s)	1			

Question 18 (b) (i)

	Criteria				
•	Describes more than one advantage in sufficient detail	2			
•	Describes only one advantage, or only lists advantages	1			

Question 18 (b) (ii)

	Criteria				
•	Outlines key purposes of both components				
•	Outlines purpose of only one component, or states a property for both without detailing purposes	1			

Question 18 (b) (iii)

	Criteria				
•	Correctly calculates the current				
•	Calculates the current using the wrong voltage	1			
•	Correctly calculates voltage across resistor but fails to get correct answer for the current	1			

Question 18 (c)

	Criteria				
•	Correct use of formulae to determine correct answer	2			
•	Incompatible orders of magnitude of units used in calculations	1			
•	Reasonable substitution into appropriate formulae	1			

Engineering Studies

2011 HSC Examination Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	Lifting devices – Engineering mechanics and hydraulics; fluid mechanics	H3.1
2	1	Civil structures – Engineering materials; corrosion	H1.2
3	1	Civil structures – Communication; Australian Standard AS1100	H3.3
4	1	Civil structures – Engineering mechanics and hydraulics; crack theory	H6.1
5	1	Personal and public transport – Engineering mechanics and hydraulics; energy, power	H3.1
6	1	Personal and public transport – Engineering electricity/electronics; electric motors used in transport systems	H2.2
7	1	Lifting devices – Engineering materials; structure/property relationships in forming processes	H1.2
8	1	Lifting devices – Engineering electricity/electronics; motors	H2.1
9	1	Personal and public transport – Engineering mechanics and hydraulics; static friction	H3.1
10	1	Civil structures – Communication; orthogonal assembly drawings	H3.3

Section II

Question 11 — Historical and Societal Influences, and the Scope of the Profession

Question	Marks	Content	Syllabus outcomes
11 (a) (i)	1	Personal and public transport – Historical and societal influences; effects of engineering innovation in transport on people's lives	H1.2, H2.1
11 (a) (ii)	2	Personal and public transport – Historical and societal influences; effects of engineering innovation in transport on people's lives	H1.2, H4.2
11 (a) (iii)	2	Personal and public transport – Historical and societal influences; historical developments in transport systems	H4.3
11 (b)	3	Personal and public transport – Historical and societal influences; environmental effects of transport systems	H1.1
11 (c)	2	Aeronautical engineering – Scope of the profession: Ethical implications	H6.1

Question	Marks	Content	Syllabus outcomes
12 (a) (i)	1	Civil structures – Engineering materials; composites	H2.1, H6.1, H6.2
12 (a) (ii)	2	Civil structures – Engineering materials; testing of materials	H1.2, H2.1, H6.2
12 (b)	2	Civil structures – Engineering materials; ceramics; glass	H1.2, H2.1
12 (c) (i)	3	Civil structures – Engineering mechanics and hydraulics; truss analysis	H3.1, H6.2
12 (c) (ii)	2	Civil structures – Engineering mechanics and hydraulics; truss analysis	H3.1, H6.2

Section II Question 12 — Civil Structures

Section II

Question 13 — Personal and Public Transport

Question	Marks	Content	Syllabus outcomes
13 (a) (i)	2	Personal and public transport – Engineering mechanics and hydraulics; apply mathematical and/or graphical methods to solve engineering problems related to transport. Syllabus p34, p37.	H3.1, H6.2
13 (a) (ii)	2	Personal and public transport – Engineering mechanics and hydraulics; apply mathematical and/or graphical methods to solve engineering problems related to transport	H3.1, H6.2
13 (b)	2	Personal and public transport – Engineering materials; structure/property relationship in the material forming processes	H1.2
13 (c)	2	Personal and public transport – Engineering electricity/electronics; electric motors used in transport systems	H2.1
13 (d)	2	Personal and public transport – Engineering materials; polymers	H2.1

Section II Question 14 — Lifting Devices

Question	Marks	Content	Syllabus outcomes
14 (a)	2	Lifting devices – Engineering electricity/electronics; motor control	H3.1, H6.2
14 (b)	2	Lifting devices – Engineering mechanics and hydraulics; conditions of equilibrium for concurrent non- coplanar forces	H3.1, H6.2
14 (c) (i)	2	Lifting devices – Engineering materials; structure/property relationships in the material forming processes	H1.2

14 (c) (ii)	3	Lifting devices – Engineering mechanics and hydraulics; conditions of equilibrium for concurrent non- coplanar forces	H3.1, H6.2
14 (d)	1	Lifting devices – Engineering materials; powder forming	H1.2, H2.1

Section II Question 15 — Aeronautical Engineering

Question	Marks	Content	Syllabus outcomes
15 (a) (i)	1	Aeronautical Engineering – Engineering mechanics and hydraulics; basic aerodynamics	H3.1, H6.2
15 (a) (ii)	2	Aeronautical Engineering – Engineering mechanics and hydraulics; forces	H3.1, H6.2
15 (b)	2	Aeronautical Engineering – Engineering mechanics and hydraulics; application to aircraft instruments	H3.1
15 (c) (i)	2	Aeronautical Engineering – Engineering materials; composites	H1.2, H2.1
15 (c) (ii)	2	Aeronautical Engineering – Engineering materials; composites	H1.2
15 (d)	2	Aeronautical Engineering – Engineering materials; specialised testing of aircraft materials	H1.2, H6.2, H3.3
15 (e)	4	Aeronautical Engineering – Communication; freehand and technical drawing; pictorial and orthogonal projections	H3.3

Section II Question 16 — Telecommunication

Question	Marks	Content	Syllabus outcomes
16 (a)	2	Telecommunication – Engineering electricity/electronics; satellite communication systems, geostations	H4.1, H1.2
16 (b)	2	Telecommunication – Engineering electricity/electronics; modulation, demodulation	H1.2
16 (c)	2	Telecommunication – Engineering materials; polymers	H1.2, H2.1, H4.1
16 (d) (i)	2	Telecommunication – Engineering electricity/electronics; modulation, demodulation	H1.2, H6.2
16 (d) (ii)	2	Telecommunication – Engineering electricity/electronics; modulation, demodulation	H6.2
16 (e)	5	Telecommunication – Communication; freehand and pictorial drawing, pictorial and dimensioned orthogonal drawings	Н3.3

Question	Marks	Content	Syllabus outcomes	
17 (a) (i)	1	Personal and public transport – Communication; Engineering Report writing	H2.2	
17 (a) (ii)	2	Personal and public transport – Communication; Engineering Report writing	H1.2	
17 (a) (iii)	3	Personal and public transport – Communication; Engineering Report writing	H2.2	
17 (b) (i)	2	Personal and public transport – Engineering mechanics and hydraulics; energy, power	H3.1	
17 (b) (ii)	2	Personal and public transport – Engineering mechanics and hydraulics; energy, power	H3.1	

Section III
Question 17 — Engineering and the Engineering Report

Section III

Ouestion	18 —	Engineerin	g and the	Engineering	Report
Zuestion	10	Bingineerin	5 and me	- Engineering	report

Question	Marks	Content	Syllabus outcomes
18 (a)	2	Telecommunication – Historical and societal influences; the effect of telecommunication engineering innovation on people's lives	H1.1, H2.2, H3.2
18 (b) (i)	2 Telecommunication – Engineering electricity/electronics; transmission media, fibre-optics		H1.1, H1.2, H2.2
18 (b) (ii)	2	Telecommunication – Engineering materials; copper and its alloys used in telecommunications; polymers	H1.2, H2.1, H3.3
18 (b) (iii)	2	Personal and public transport – Engineering electricity/electronics; AC/DC circuits	H3.1
18 (c)	2	Civil structures – Engineering mechanics and hydraulics; stress and strain; Young's modulus	H3.1